首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到6条相似文献,搜索用时 0 毫秒
1.
Magnetic optical sensor particles with multifunctional cores and shells are synthesized via a facile nanoprecipitation method and the subsequent modification of the particle shell. The hydrophobic particle core includes optical oxygen indicators, a light harvesting system, photosensitizers, and magnetic nanoparticles. Further functionalities are introduced by modifying the shell with enzymes, antibodies, multiple layers of polyelectrolytes, stimuli‐responsive polymers, and luminescent indicator dyes. The hydrodynamic diameter is tunable by varying different precipitation parameters.  相似文献   

2.
Materials that respond to physiological stimuli are important in developing advanced biomaterials for modern therapies. The reversibility of covalent crosslinks formed by phenylboronate (PBA) and salicylhydroxamate (SHA) has been exploited to provide a pH‐responsive gel for application to the vaginal tract. Dynamic rheology reveals that the gel frequency‐dependent viscoelastic properties are modulated by pH. At pH 4.8 the viscous component dominates throughout most of the frequency range. As the pH increases, the characteristic relaxation time continues to increase while the GPlateau levels off above pH 6. At pH 7.5, the elastic component dominates throughout the frequency sweep and is predominately independent of frequency. Particle tracking assesses the transport of both fluorescently labeled HIV‐1 and 100‐nm latex particles in the PBA–SHA crosslinked gel as a function of pH. At pH 4.8 the ensemble‐averaged mean squared displacement at lag times greater than three seconds reveals that transport of the HIV‐1 and 100‐nm particles becomes significantly impeded by the matrix, exhibiting diffusion coefficients less than 0.0002 µm2 s?1. This pH‐responsive gel thus displays properties that have the potential to significantly reduce the transport of HIV‐1 to susceptible tissues and thus prevent the first stage of male‐to‐female transmission of HIV‐1.  相似文献   

3.
Macroscopic vanadium oxide fibers have been fabricated by an extrusion process. By varying the shear rate associated with the gel extrusion process we have been able to tune the diameter and transversal geometry of the fibers at macroscopic length scales. At the mesoscopic length scale, small‐angle X‐ray scattering (SAXS) analysis provides evidence for the possibility of fine tuning the degree of alignment of the V2O5 ribbons inside the fibers; this alignment is clearly improved upon increasing the shear rate. Nitrogen physisorption measurements (Brunauer–Emmett–Teller (BET)) indicate that the as‐synthesized fibers exhibit poor mesoporosity, largely due to the presence of remaining poly(vinyl alcohol) (PVA) entities. Microscopically, from XRD measurements, the fiber structure appears to be semi‐crystalline. 51V magic angle spinning NMR (MAS NMR) spectroscopy reveals that the local environment of 51V is typical of the structure of a V2O5·1.8 H2O xerogel. We demonstrate here that the alignment of the nanoribbon subunits can be tuned via the shear rate applied during the extrusion process, which provides a good handle for tuning the mechanical and sensing properties of the as‐synthesized fibers.  相似文献   

4.
This paper describes materials and mechanics aspects of bending in systems consisting of ribbons and bars of single crystalline silicon supported by sheets of plastic. The combined experimental and theoretical results provide an understanding for the essential behaviors and for mechanisms associated with layouts that achieve maximum bendability. Examples of highly bendable silicon devices on plastic illustrate some of these concepts. Although the studies presented here focus on ribbons and bars of silicon, the same basic considerations apply to other implementations of inorganic materials on plastic substrates, ranging from amorphous or polycrystalline thin films, to collections of nanowires and nanoparticles. The contents are, as a result, relevant to the growing community of researchers interested in the use of inorganic materials in flexible electronics.  相似文献   

5.
For the 3D printing of bioscaffolds, the importance of a suitable bioink cannot be overemphasized. With excellent printability and biocompatibility, alginate (Alg) is one of the most used bioinks. However, its bioinert nature and insufficient mechanical stability, due to only crosslinking via cation interactions, hinder the practical application of Alg‐based bioinks in the individualized therapy of tissue defects. To overcome these drawbacks, for the first time, an ε‐polylysine (ε‐PL)‐modified Alg‐based bioink (Alg/ε‐PL) is produced. The introduction of ε‐PL improves the printability of the Alg‐based bioink due to increasing electrostatic interactions, which enhances the self‐supporting stability of the as‐printed scaffolds. The presence of the functional crosslinking –COOH and –NH2 groups in Alg and ε‐PL under mild conditions further enhances the mechanical stability of the scaffolds, far exceeding that of Alg/Ca2+ scaffolds. The surface charge of the prepared scaffolds is finely tuned by the feed ratio of Alg to ε‐PL and postimmobilization of different quantities of additional ε‐PL, with a view to enhancing cell adhesion and further biofunctionalization. The results indicate that chondroitin sulfate, an extracellular matrix component, and vascular endothelial growth factor can be successfully applied to biofunctionalize the scaffolds via electrostatic adsorption for enhanced biological activity.  相似文献   

6.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号