首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Thermal properties and non‐isothermal melt‐crystallization behavior of poly(trimethylene terephthalate) (PTT)/poly(lactic acid) (PLA) blends were investigated using differential scanning calorimetry and thermogravimetric analysis. The blends exhibit single and composition‐dependent glass transition temperature, cold crystallization temperature (Tcc) and melt crystallization peak temperature (Tmc) over the entire composition range, implying miscibility between the PLA and PTT components. The Tcc values of PTT/PLA blends increase, while the Tmc values decrease with increasing PLA content, suggesting that the cold crystallization and melt crystallization of PTT are retarded by the addition of PLA. The modified Avrami model is satisfactory in describing the non‐isothermal melt crystallization of the blends, whereas the Ozawa method is not applicable to the blends. The estimated Avrami exponent of the PTT/PLA blends ranges from 3.25 to 4.11, implying that the non‐isothermal crystallization follows a spherulitic‐like crystal growth combined with a complicated growth form. The PTT/PLA blends generally exhibit inferior crystallization rate and superior activation energy compared to pure PTT at the same cooling rate. The greater the PLA content in the PTT/PLA blends, the lower the crystallization rate and the higher the activation energy. Moreover, the introduction of PTT into PLA leads to an increase in the thermal stability behavior of the resulting PTT/PLA blends. Copyright © 2011 Society of Chemical Industry  相似文献   

2.
Poly(butylene 2,6‐naphthalate) (PBN)/poly(ethylene glycol) (PEG) copolymers were synthesized by the two‐step melt copolymerization process of dimethyl‐2,6‐naphthalenedicarboxylate (2,6‐NDC) with 1,4‐butanediol (BD) and PEG. The copolymers produced had different PEG molecular weights and contents. The structures, thermal properties, and hydrophilicities of these copolymers were studied by 1H NMR, DSC, TGA, and by contact angle and moisture content measurements. In particular, the intrinsic viscosities of PBN/PEG copolymers increased with increasing PEG molecular weights, but the melting temperatures (Tm), the cold crystallization temperatures (Tcc), and the heat of fusion (ΔHf) values of PBN/PEG copolymers decreased on increasing PEG contents or molecular weights. The thermal stabilities of the copolymers were unaffected by PEG content or molecular weight. Hydrophilicities as determined by contact angle and moisture content measurements were found to be significantly increased on increasing PEG contents and molecular weights. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 2677–2683, 2006  相似文献   

3.
Differential scanning calorimetry (DSC), wide angle X‐ray diffraction (WAXD) and dynamic mechanical analysis (DMA) properties of poly(lactic acid)/ poly(butylene adipate‐co‐terephthalate) (PLA/PBAT) specimens suggest that only small amounts of poor PLA and/or PBAT crystals are present in their corresponding melt crystallized specimens. In fact, the percentage crystallinity, peak melting temperature and onset re‐crystallization temperature values of PLA/PBAT specimens reduce gradually as their PBAT contents increase. However, the glass transition temperatures of PLA molecules found by DSC and DMA analysis reduce to the minimum value as the PBAT contents of PLAxPBATy specimens reach 2.5 wt %. Further morphological and DMA analysis of PLA/PBAT specimens reveal that PBAT molecules are miscible with PLA molecules at PBAT contents equal to or less than 2.5 wt %, since no distinguished phase‐separated PBAT droplets and tan δ transitions were found on fracture surfaces and tan δ curves of PLA/PBAT specimens, respectively. In contrast to PLA, the PBAT specimen exhibits highly deformable properties. After blending proper amounts of PBAT in PLA, the inherent brittle deformation behavior of PLA was successfully improved. Possible reasons accounting for these interesting crystallization, compatible and tensile properties of PLA/PBAT specimens are proposed. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

4.
Summary: Amorphous and crystallized poly(L ‐lactic acid) (PLLA‐A and PLLA‐C, respectively) films with different contents of N,N,N′,N′‐tetramethyl‐1,4‐phenylenediamine (TMPD) as a photosensitizer were prepared, and the effects of the addition of TMPD on the photodegradation of PLLA films were investigated. It was found that the addition of TMPD effectively enhanced the photodegradation of PLLA films and thereby decreased their molecular weight of PLLA films regardless of their crystallinity, and that PLLA films with different molecular weights can be prepared by the addition of different amounts of TMPD and subsequent UV irradiation. Too high contents of TMPD however caused the brittleness of PLLA films due to a large decrease in molecular weight. The PLLA chains in crystalline regions as well as those in amorphous regions are photodegradable even at an early stage, in marked contrast to their hydrolytic degradation, where the chains in the amorphous regions are selectively degraded. The basic changes in glass transition, cold crystallization, and melting temperatures (Tg, Tcc, and Tm, respectively) of PLLA films during UV irradiation can be ascribed to low‐temperature annealing effects; i.e., annealing‐induced stabilization in chain packing should have elevated Tg, and annealing‐induced formation of crystallite nuclei should have lowered Tcc and increased Tm. The exceptional large decreases in Tcc and Tm of UV‐irradiated PLLA‐A films and in Tg of UV‐irradiated PLLA‐C films at high TMPD contents are attributable to the large decrease in molecular weight, whereas the exceptional decrease in Tm of PLLA‐C films at high TMPD contents can be due to the folding surface structural change of crystalline regions or to the lattice disorder caused by molecular structural changes.

of PLLA‐A films before UV irradiation and after UV irradiation for 60 h as a function of TMPD content.  相似文献   


5.
Poly(L ‐lactic acid) (PLLA) and poly(D ‐lactic acid) (PDLA) with very different weight‐average molecular weights (Mw) of 4.0 × 103 and 7.0 × 105 g mol?1 (Mw(PDLA)/Mw(PLLA) = 175) were blended at different PDLA weight ratios (XD = PDLA weight/blend weight) and their crystallization from the melt was investigated. The presence of low molecular weight PLLA facilitated the stereocomplexation and thereby lowered the cold crystallization temperature (Tcc) for non‐isothermal crystallization during heating and elevated the radial growth rate of spherulites (G) for isothermal crystallization, irrespective of XD. The orientation of lamellae in the spherulites was higher for the neat PLLA, PDLA and an equimolar blend than for the non‐equimolar blends. It was found that the orientation of lamellae in the blends was maintained by the stereocomplex (SC) crystallites. Although the G values are expected to decrease with an increase in XD or the content of high‐molecular‐weight PDLA with lower chain mobility compared with that of low‐molecular‐weight PLLA, G was highest at XD = 0.5 where the maximum amount of SC crystallites was formed and the G values were very similar for XD = 0.4 and XD = 0.6 with the same enantiomeric excess. This means that the effect of SC crystallites overwhelmed that of chain mobility. The nucleating mechanisms of SC crystallites were identical for XD = 0.1–0.5 in the Tc range 130–180 °C. Copyright © 2011 Society of Chemical Industry  相似文献   

6.
EVA was blended with phenoxy over the whole range of composition using a twin‐screw Brabender. Two‐phase separation caused by EVA crystallization was observed in the EVA‐rich blends and the dispersed domain of EVA was not clearly shown in the phenoxy‐rich blends. Differential scanning calorimetry (DSC) showed that the glass transition temperature (Tg) of EVA was increased by 5–10°C in the EVA‐rich blends but the Tg of phenoxy was superposed over the melting behavior of EVA. X‐ray diffraction measurement indicated that EVA crystallization was restricted in the phenoxy‐rich blends and the EVA crystal structure was influenced by incorporation of phenoxy into the EVA‐rich blends. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 73: 227–236, 1999  相似文献   

7.
Blending of microbial polyester poly(3‐hydroxybutyrate) (PHB) with various dendritic polyester oligomers or dendrimers was achieved by solution casting to improve the film forming ability of PHB. Films of the blends were characterized by differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), scanning electron micrograph (SEM), and Fourier transform infrared spectroscopy (FTIR). It was revealed that there were mainly two types of interactions in the blending system: the plasticizing or lubricating effect of the low melting spherical dendrimers molecules improved the polymer chain mobility through the suppression of PHB crystallization in the blends; The dendrimers also functioned as crosslinking agents or antiplasticizing agents via weak hydrogen bonding to enhance the overall intermolecular interactions which decrease the chain mobility and thus cause the increase of glass transition temperature (Tg) of PHB. TGA results concluded that incorporating the dendrimers could retard the thermal decomposition of PHB and enhanced its thermal stability accordingly. With the above blend processes, the so‐obtained PHB possessed better film forming ability and even patterned surface structures. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102:3782–3790, 2006  相似文献   

8.
Tri‐(butanediol‐monobutyrate) citrate (TBBC) as a new plasticizer for poly(lactic acid) (PLA) was synthesized via a two‐step esterification. The chemical structure of TBBC was characterized by 1H‐nuclear magnetic resonance. The studies on solubility parameters, transparence, and storage stability indicated the good miscibility between PLA and TBBC. The glass transition, crystallization, thermal, and mechanical properties of PLA plasticized by TBBC were evaluated. With an increase in TBBC content, the glass transition temperature (Tg), melting point (Tm), and the cold crystallization temperature (Tcc) of plasticized PLA gradually shifted to a lower temperature. The elongation at break and flexibility were greatly improved by the addition of TBBC. After 30 days of storage, PLA plasticized with up to 20 wt% of TBBC exhibited good storage stability and remained the original transparence and mechanical properties. The flexibility of PLA/TBBC films can be tuned by changing TBBC content. The corresponding crystalline morphology and structure were investigated by Polarizing optical microscope and X‐ray diffraction as well. This study revealed that TBBC was miscible with PLA and may therefore be a promising plasticizer for PLA‐based packaging materials. POLYM. ENG. SCI., 55:205–213, 2015. © 2014 Society of Plastics Engineers  相似文献   

9.
An important strategy used in the polymer industry in recent years is blending two bio‐based polymers to attain desirable properties similar to traditional thermoplastics, thus increasing the application potential for bio‐based and bio‐degradable polymers. Miscibility of poly(3‐hydroxybutyrate‐co‐3‐hydroxyvalerate) (PHBV) with poly(L ‐lactic acid) (PLA) were characterized using differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), and scanning electron microscopy (SEM). Three different grades of commercially available PLAs and one type of PHBV were blended in different ratios of 50/50, 60/40, 70/30, and 80/20 (PHBV/PLA) using a micro‐compounder at 175°C. The DSC and TGA analysis showed the blends were immiscible due to different stereo configuration of PLA polymer and two distinct melting temperatures. However, some compatibility between PHBV and PLA polymers was observed due to decreases in PLA's glass transition temperatures. Additionally, the blends do not show clear separation by SEM analysis, as observed in the thermal analysis. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

10.
The crystallization kinetics of poly(butylene terephthalate) (PBT), poly(ethylene terephthalate) (PET), and their copolymers poly(1,4‐butylene‐co‐ethylene terephthalate) (PBET) containing 70/30, 65/35 and 60/40 molar ratios of 1,4‐butanediol/ethylene glycol were investigated using differential scanning calorimetry (DSC) at crystallization temperatures (Tc) which were 35–90 °C below equilibrium melting temperature . Although these copolymers contain both monomers in high proportion, DSC data revealed for copolymer crystallization behaviour. The reason for such copolymers being able to crystallize could be due to the similar chemical structures of 1,4‐butanediol and ethylene glycol. DSC results for isothermal crystallization revealed that random copolymers had a lower degree of crystallinity and lower crystallite growth rate than those of homopolymers. DSC heating scans, after completion of isothermal crystallization, showed triple melting endotherms for all these polyesters, similar to those of other polymers as reported in the literature. The crystallization isotherms followed the Avrami equation with an exponent n of 2–2.5 for PET and 2.5–3.0 for PBT and PBETs. Analyses of the Lauritzen–Hoffman equation for DSC isothermal crystallization data revealed that PBT and PET had higher growth rate constant Go, and nucleation constant Kg than those of PBET copolymers. © 2001 Society of Chemical Industry  相似文献   

11.
Well‐defined poly(l ‐lactide‐b‐ethylene brassylate‐b‐l ‐lactide) (PLLA‐b‐PEB‐b‐PLLA) triblock copolymer was synthesized by using double hydroxyl‐terminated PEBs with different molecular weights. Gel permeation chromatography and NMR characterization were employed to confirm the structure and composition of the triblock copolymers. DSC, wide‐angle X‐ray diffraction, TGA and polarized optical microscopy were also employed to demonstrate the relationship between the composition and properties. According to the DSC curves, the cold crystallization peak vanished gradually with decrease of the PLLA block, illustrating that the relatively smaller content of PLLA may lead to the formation of a deficient PLLA type crystal, leading to a decrease of melting enthalpy and melting temperature. Multi‐step thermal decompositions were determined by TGA, and the PEB unit exhibited much better thermal stability than the PLLA unit. Polarized optical microscopy images of all the triblock samples showed that spherulites which develop radially and with an extinction pattern in the form of a Maltese cross exhibit no ring bond. The growth rate of the spherulites of all triblock samples was investigated. The crystallization capacity of PLLA improved with incorporation of PLLA, which accords with the DSC and wide‐angle X‐ray diffraction results. © 2019 Society of Chemical Industry  相似文献   

12.
Blends of two biodegradable semicrystalline polymers, poly(p‐dioxanone) (PPDO) and poly(vinyl alcohol) (PVA) were prepared with different compositions. The thermal stability, phase morphology and thermal behavior of the blends were studied by using thermogravimetric analysis (TGA), scanning electron microscopy (SEM) and differential scanning calorimetry (DSC). From the TGA data, it can be seen that the addition of PVA improves the thermal stability of PPDO. DSC analysis showed that the glass transition temperature (Tg) and the melting temperature (Tm) of PPDO in the blends were nearly constant and equal to the values for neat PPDO, thus suggesting that PPDO and PVA are immiscible. It was found from the SEM images that the blends were phase‐separated, which was consistent with the DSC results. Additionally, non‐isothermal crystallization under controlled cooling rates was explored, and the Ozawa theory was employed to describe the non‐isothermal crystallization kinetics. Copyright © 2006 Society of Chemical Industry  相似文献   

13.
Poly(N‐vinylpyrrolidone) (PVP) groups were grafted onto poly(3‐hydroxybutyrate‐co‐3‐hydroxyvalerate) (PHBV) backbone to modify the properties of PHBV and synthesize a new novel biocompatible graft copolymer. The effect of graft modification with PVP on the thermal and mechanical properties of PHBV was investigated. The thermal stability of grafted PHBV was remarkably improved while the melting temperature (Tm) was almost not affected by graft modification. The isothermal crystallization behavior of samples was observed by polarized optical microscopy and the results showed that the spherulitic radial growth rates (G) of grafted PHBV at the same crystallization temperature (Tc) decreased with increasing graft yield (graft%) of samples. Analysis of isothermal crystallization kinetics showed that both the surface free energy (σe) and the work of chain‐folding per molecular fold (q) of grafted PHBV increased with increasing graft%, implying that the chains of grafted PHBV are less flexible than ungrafted PHBV. This conclusion was in agreement with the mechanical testing results. The Young's modulus of grafted PHBV increased while the elongation decreased with increasing graft%. The hydrophilicity of polymer films was also investigated by the water contact angle measurement and the results revealed that the hydrophilicity of grafted PHBV was enhanced. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

14.
The miscibility of poly(3‐hydroxyvalerate) (PHV)/poly(p‐vinyl phenol) (PVPh) blends has been studied by differential scanning calorimetry (DSC) and Fourier transform infrared (FTIR) spectroscopy. The blends are miscible as shown by the existence of a single glass transition temperature (Tg) and a depression of the equilibrium melting temperature of PHV in each blend. The interaction parameter was found to be −1.2 based on the analysis of melting point depression data using the Nishi–Wang equation. Hydrogen‐bonding interactions exist between the carbonyl groups of PHV and the hydroxyl groups of PVPh as evidenced by FTIR spectra. The crystallization of PHV is significantly hindered by the addition of PVPh. The addition of 50 wt % PVPh can totally prevent PHV from cold crystallization. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 74: 383–388, 1999  相似文献   

15.
Poly(p‐dioxanone)–poly(ethylene glycol)–poly(p‐dioxanone) ABA triblock copolymers (PEDO) were synthesized by ring‐opening polymerization from p‐dioxanone using poly(ethylene glycol) (PEG) with different molecular weights as macroinitiators in N2 atmosphere. The copolymer was characterized by 1H NMR spectroscope. The thermal behavior, crystallization, and thermal stability of these copolymers were investigated by differential scanning calorimetry and thermogravimetric measurements. The water absorption of these copolymers was also measured. The results indicated that the content and length of PEG chain have a greater effect on the properties of copolymers. This kind of biodegradable copolymer will find a potential application in biomedical materials. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102:1092–1097, 2006  相似文献   

16.
The effect of crystallization on the microstructure and mechanical properties of a poly[(ethylene oxide)‐block‐(amide‐12)] (PEBA)‐toughened poly(lactic acid) (PLA) blend was investigated. Annealing was used to govern the crystallization microstructure and hence the mechanical properties of the blend. Crystallization resulted in the morphology of the PLA component altering from a continuous amorphous phase to continuous crystalline phase. Moreover, as the crystallization of PLA proceeded, the degree of crystallinity, spherulite size and lamellar thickness increased, and the interlamellar and interspherulitic connections became weaker. These led to the large plastic deformation in the matrix during tension being suppressed, and cracks appeared easily under tensile load, which was favorable to fracture for the blend during tension and so a small elongation at break was obtained. However, the elongation at break for all the annealed specimens was higher than that for neat amorphous PLA, suggesting that PEBA still showed a toughening effect for PLA under annealing. © 2012 Society of Chemical Industry  相似文献   

17.
Crystallization and melting behaviors of poly(p‐phenylene sulfide) (PPS) in blends with poly(ether sulfone) (PES) prepared by melt‐mixing were investigated by differential scanning calorimetry (DSC). The blends showed two glass transition temperatures corresponding to PPS‐ and PES‐rich phases, which increased with increasing PES content, indicating that PPS and PES have some compatibility. The cold crystallization temperature of the blended PPS was a little higher than that of pure PPS. Also, the heats of crystallization and melting of the blended PPS decreased with increasing PES content, indicating that the degree of crystallinity decreased with an increase of PES content. The isothermal crystallization studies revealed that the crystallization of PPS is accelerated by blending PPS with 10 wt % PES and further addition results in the retardation. The Avrami exponent n was about 4 independent on blend composition. The activation energy of crystallization increased by blending with PES. The equilibrium melting point decreased linearly with increasing PES content. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 74: 1686–1692, 1999  相似文献   

18.
Differential scanning calorimetry, combined with Avrami theory, was used to investigate the kinetics of three steps of the complex crystallization process of poly(N‐methyldodecano‐12‐lactam) (MPA): (1) primary melt crystallization at respective crystallization temperature (Tc), (2) additional crystallization at 30°C, and (3) recrystallization at 54°C. Kinetics of the three steps was discussed with respect to Tc. The Avrami exponent n of primary melt crystallization decreased between 2.5 and 1.9 in the range of Tc values of ?10 to 20°C, which suggests heterogeneous nucleation, followed by two‐dimensional growth, with a larger involvement of homogeneous thermal nucleation at greater supercoolings. The crystallization rate constant k decreased with increasing Tc. The value of n = 1.5 for additional crystallization implies a two‐dimensional diffusion‐controlled crystal growth with a suppressed nucleation phase. For Tc values ranging from ?10 to 0°C and 0 to 20°C, k showed weak and quite strong decreasing dependencies on Tc, respectively. The recrystallization mechanism involved partial melting of primary crystallites and two‐dimensional rearrangement of chains into a more perfect structure. The rate of this process was almost independent of Tc. The values of activation energies were derived for the three steps of MPA crystallization using the Arrhenius equation. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 93: 279–293, 2004  相似文献   

19.
Poly(l ‐lactic acid) (PLLA) is a good biomedical polymer material with wide applications. The addition of poly(ethylene glycol) (PEG) as a plasticizer and the formation of stereocomplex crystals (SCs) have been proved to be effective methods for improving the crystallization of PLLA, which will promote its heat resistance. In this work, the crystallization behavior of PEG and PLLA/poly(d ‐lactic acid) (PDLA) in PLLA/PDLA/PEG and PEG‐b‐PLLA/PEG‐b‐PDLA blends has been investigated using differential scanning calorimetry, polarized optical microscopy and X‐ray diffraction. Both SCs and homocrystals (HCs) were observed in blends with asymmetric mass ratio of PLLA/PDLA, while exclusively SCs were observed in blends with approximately equal mass ratio of PLLA/PDLA. The crystallization of PEG was only observed for the symmetric blends of PLLA39k/PDLA35k/PEG2k, PLLA39k/PDLA35k/PEG5k, PLLA69k/PDLA96k/PEG5k and PEG‐b‐PLLA31k/PEG‐b‐PDLA27k, where the mass ratio of PLLA/PDLA was approximately 1/1. The results demonstrated that the formation of exclusively SCs would facilitate the crystallization of PEG, while the existence of both HCs and SCs could restrict the crystallization of PEG. The crystallization of PEG is related to the crystallinity of PLLA and PDLA, which will be promoted by the formation of SCs. © 2017 Society of Chemical Industry  相似文献   

20.
Poly(lactic acid) (PLA) and poly[(butylene adipate)‐co‐terephthalate] (PBAT) are both commonly used biodegradable polymers. In this study, co‐extrusion of PLA and PBAT was used to create alternately multilayered films in order to obtain high‐flexibility PLA film. The incorporation of PBAT provides enhanced flexibility to PLA and the effect is more distinct in the PLA/PBAT multilayer film as the number of layers increases. Through differential scanning calorimetric and wide‐angle X‐ray scattering analyses, the crystallinity of PLA is shown to decrease more in the multilayer film than in the blended film. Transparency is also enhanced in the multilayer film. The fabrication of alternate multilayered film by co‐extrusion of PLA and PBAT shows a new method of preparing a flexible, transparent and fully biodegradable film, which is impossible through a blending process. © 2014 Society of Chemical Industry  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号