首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Addition of lithiated methoxyallene 5 to literature‐known amino aldehyde 3 followed by ozonolysis provided syn‐configurated α‐hydroxy‐β‐amino ester 6 in moderate overall yield and with an ee of 90%. The predominant formation of syn‐compounds may be due to a chelate controlled addition step.  相似文献   

2.
A new class of chiral C2‐symmetric bis(trialkyl)phosphine ligands has been prepared and used in Rh(I)‐catalyzed asymmetric hydrogenation reactions. The ligands, 1,2‐bis(alkylmethylphosphino)ethanes 1a‐g (abbreviated as BisP*, alkyl = t‐butyl, 1‐adamantyl, 1‐methylcyclohexyl, 1,1‐diethylpropyl, cyclopentyl, cyclohexyl, isopropyl) and 1,2‐bis(alkylmethylphosphino)methanes 2a‐d (abbreviated as MiniPHOS, alkyl = t‐butyl, cyclohexyl, isopropyl, phenyl) are prepared by a simple synthetic approach based on the air‐stable phosphine–boranes. These new ligands give the corresponding Rh(I) complexes, which are effective catalytic precursors for the asymmetric hydrogenation of a representative series of dehydroamino acids and itaconic acid derivatives. Enantioselectivities observed in these hydrogenations are universally high and in many cases exceed 99%. X‐Ray characterization of four precatalysts, study of the pressure effects, deuteration experiments, and characterization of the wide series of intermediates in the catalytic cycle are used for the discussion of the possible correlation between the structure of the catalysts and the outcome of the catalytic asymmetric hydrogenation.  相似文献   

3.
A simple and efficient method is described for the introduction of noncanonical amino acids at multiple, defined sites within recombinant polypeptide sequences. Escherichia coli MRA30, a bacterial host strain with attenuated activity of release factor 1 (RF1), was assessed for its ability to support incorporation of a diverse range of noncanonical amino acids in response to multiple encoded amber (TAG) codons within genes derived from superfolder GFP and an elastin‐mimetic protein polymer. Suppression efficiency and protein yield depended on the identity of the orthogonal aminoacyl‐tRNA synthetase/tRNACUA pair and the noncanonical amino acid. Elastin‐mimetic protein polymers were prepared in which noncanonical amino acid derivatives were incorporated at up to 22 specific sites within the polypeptide sequence with high substitution efficiency. The identities and positions of the variant residues were confirmed by mass spectrometric analysis of the full‐length polypeptides and proteolytic cleavage fragments from thermolysin digestion. The data suggest that this multisite suppression approach permits the preparation of protein‐based materials in which novel chemical functionalities can be introduced at precisely defined positions within the polypeptide sequence.  相似文献   

4.
Among the class of primary amine‐thioureas based on tert‐butyl esters of α‐amino acids, the most efficient organocatalyst for “difficult” Michael reactions was identified. The derivative based on (S)‐di‐tert‐butyl aspartate and (1R,2R)‐diphenylethylenediamine provided the products of the reaction between aryl methyl ketones and nitroolefins in excellent yields and enantioselectivities. In addition, this new catalyst can be used at low catalyst loading (5 mol%). The utility of this methodology was highlighted by the efficient synthesis of (S)‐baclofen, (R)‐baclofen and (S)‐phenibut.  相似文献   

5.
6.
7.
We report the engineering of zinc‐finger‐like motifs containing the unnatural amino acid (2,2′‐bipyridin‐5‐yl)alanine (Bpy‐Ala). A phage‐display library was constructed in which five residues in the N‐terminal finger of zif268 were randomized to include both canonical amino acids and Bpy‐Ala. Panning of this library against a nine‐base‐pair DNA binding site identified several Bpy‐Ala‐containing functional Zif268 mutants. These mutants bind the Zif268 recognition site with affinities comparable to that of the wild‐type protein. Further characterization indicated that the mutant fingers bind low‐spin FeII rather than ZnII. This work demonstrates that an expanded genetic code can lead to new metal ion binding motifs that can serve as structural, catalytic, or regulatory elements in proteins.  相似文献   

8.
9.
10.
Cremimycin is a 19‐membered macrolactam glycoside antibiotic based on three distinctive substructures: 1) a β‐amino fatty acid starter moiety, 2) a bicyclic macrolactam ring, and 3) a cymarose unit. To elucidate the biosynthetic machineries responsible for these three structures, the cremimycin biosynthetic gene cluster was identified. The cmi gene cluster consists of 33 open reading frames encoding eight polyketide synthases, six deoxysugar biosynthetic enzymes, and a characteristic group of five β‐amino‐acid‐transfer enzymes. Involvement of the gene cluster in cremimycin production was confirmed by a gene knockout experiment. Further, a feeding experiment demonstrated that 3‐aminononanoate is a direct precursor of cremimycin. Two characteristic enzymes of the cremimycin‐type biosynthesis were functionally characterized in vitro. The results showed that a putative thioesterase homologue, CmiS1, catalyzes the Michael addition of glycine to the β‐position of a non‐2‐enoic acid thioester, followed by hydrolysis of the thioester to give N‐carboxymethyl‐3‐aminononanoate. Subsequently, the resultant amino acid was oxidized by a putative FAD‐dependent glycine oxidase homologue, CmiS2, to produce 3‐aminononanoate and glyoxylate. This represents a unique amino transfer mechanism for β‐amino acid biosynthesis.  相似文献   

11.
The incorporation of the non‐natural amino acids (4R)‐ and (4S)‐fluoroproline (Flp) has been successfully used to improve protein stability, but little is known about their effect on protein folding kinetics. Here we analyzed the influence of (4R)‐ and (4S)‐Flp on the rate‐limiting trans‐to‐cis isomerization of the Ile75–Pro76 peptide bond in the folding of Escherichia coli thioredoxin (Trx). While (4R)‐Flp at position 76 had essentially no effect on the isomerization rate in the context of the intact tertiary structure, (4S)‐Flp accelerated the folding reaction ninefold. Similarly, tenfold faster trans‐to‐cis isomerization of Ile75–(4S)‐Flp76 relative to Ile75–Pro76 was observed in the unfolded state of Trx. Our results show that the replacement of cis prolines by non‐natural proline analogues can be used for modulating the folding rates of proteins with cis prolyl‐peptide bonds in the native state.  相似文献   

12.
Mannopeptimycin, a potent drug lead, has superior activity against difficult‐to‐treat multidrug‐resistant Gram‐positive pathogens such as methicillin‐resistant Staphylococcus aureus (MRSA). (2S,3S)‐β‐Methylphenylalanine is a residue in the cyclic hexapeptide core of mannopeptimycin, but the synthesis of this residue is far from clear. We report here on the reaction order and the stereochemical course of reaction in the formation of (2S,3S)‐β‐methylphenylalanine. The reaction is executed by the enzymes MppJ and TyrB, an S‐adenosyl methionine (SAM)‐dependent methyltransferase and an (S)‐aromatic‐amino‐acid aminotransferase, respectively. Phenylpyruvic acid is methylated by MppJ at its benzylic position at the expense of one equivalent of SAM. The resulting β‐methyl phenylpyruvic acid is then converted to (2S,3S)‐β‐methylphenylalanine by TyrB. MppJ was further determined to be regioselective and stereoselective in its catalysis of the formation of (3S)‐β‐methylphenylpyruvic acid. The binding constant (KD) of MppJ versus SAM is 26 μM . The kinetic constants with respect to kcat Ppy and KM Ppy, and kcat SAM and KM SAM are 0.8 s?1 and 2.5 mM , and 8.15 s?1 and 0.014 mM , respectively. These results suggest SAM has higher binding affinity for MppJ than Ppy, and the C? C bond formation in βmPpy might be the rate‐limiting step, as opposed to the C? S bond breakage in SAM.  相似文献   

13.
14.
15.
2‐(4‐Nitrophenylsulfonyl)ethoxycarbonyl (Nsc) is a useful substitute for the Fmoc group. It is easily removed not only with secondary amines but with tris(aminoethyl)amine (TAEA) and with resin‐bound TAEA, thus allowing for a simplified work‐up: the side products of the deprotection are removed either by extraction with phosphate buffer or by filtration.  相似文献   

16.
17.
18.
19.
3‐Methylaspartate ammonia‐lyase (MAL) catalyzes the reversible amination of mesaconate to give both (2S,3S)‐3‐methylaspartic acid and (2S,3R)‐3‐methylaspartic acid as products. The deamination mechanism of MAL is likely to involve general base catalysis, in which a catalytic base abstracts the C3 proton of the respective stereoisomer to generate an enolate anion intermediate that is stabilized by coordination to the essential active‐site MgII ion. The crystal structure of MAL in complex with (2S,3S)‐3‐methylaspartic acid suggests that Lys331 is the only candidate in the vicinity that can function as a general base catalyst. The structure of the complex further suggests that two other residues, His194 and Gln329, are responsible for binding the C4 carboxylate group of (2S,3S)‐3‐methylaspartic acid, and hence are likely candidates to assist the MgII ion in stabilizing the enolate anion intermediate. In this study, the importance of Lys331, His194, and Gln329 for the activity and stereoselectivity of MAL was investigated by site‐directed mutagenesis. His194 and Gln329 were replaced with either an alanine or arginine, whereas Lys331 was mutated to a glycine, alanine, glutamine, arginine, or histidine. The properties of the mutant proteins were investigated by circular dichroism (CD) spectroscopy, kinetic analysis, and 1H NMR spectroscopy. The CD spectra of all mutants were comparable to that of wild‐type MAL, and this indicates that these mutations did not result in any major conformational changes. Kinetic studies demonstrated that the mutations have a profound effect on the values of kcat and kcat/KM; this implicates Lys331, His194 and Gln329 as mechanistically important. The 1H NMR spectra of the amination and deamination reactions catalyzed by the mutant enzymes K331A, H194A, and Q329A showed that these mutants have strongly enhanced diastereoselectivities. In the amination direction, they catalyze the conversion of mesaconate to yield only (2S,3S)‐3‐methylaspartic acid, with no detectable formation of (2S,3R)‐3‐methylaspartic acid. The results are discussed in terms of a mechanism in which Lys331, His194, and Gln329 are involved in positioning the substrate and in formation and stabilization of the enolate anion intermediate.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号