首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
For systems with uncertainties, lots of PID parameter tuning methods have been proposed from the view point of the robust stability theory. However, the control performance becomes conservative using robust PID controllers. In this paper, a new two‐degree‐of‐freedom (2DOF) controller, which can improve the tracking properties, is proposed for nonlinear systems. According to the proposed method, the prefilter is designed as the PD compensator whose control parameters are tuned by the idea of a memory‐based modeling (MBM) method. Since the MBM method is a type of local modeling methods for nonlinear systems, PD parameters can be tuned adequately in an online manner corresponding to nonlinear properties. Finally, the effectiveness of the newly proposed control scheme is numerically evaluated on a simulation example. Copyright © 2008 John Wiley and Sons Asia Pte Ltd and Chinese Automatic Control Society  相似文献   

2.
This paper proposes a novel nonfragile robust asynchronous control scheme for master‐slave uncertain chaotic Lurie network systems with randomly occurring time‐varying parameter uncertainties and controller gain fluctuation. The asynchronous phenomenon occurs between the system modes and the controller modes. In order to consider a more realistic situation in designing a reliable proportional‐derivative controller, Bernoulli stochastic process and memory feedback are introduced to the concept of nonlinear control system. First, by taking full advantage of the additional derivative state term and variable multiple integral terms, a newly augmented Lyapunov‐Krasovskii functional is constructed via an adjustable parameter. Second, based on new integral inequalities including almost all of the existing integral inequalities, which can produce more accurate bounds with more orthogonal polynomials considered, less conservative synchronization criteria are obtained. Third, a desired nonfragile estimator controller is achieved under the aforementioned methods. Finally, 4 numerical simulation examples of Chua's circuit and 3‐cell cellular neural network with multiscroll chaotic attractors are presented to illustrate the effectiveness and advantages of the proposed theoretical results.  相似文献   

3.
线性时滞不确定系统的记忆与无记忆复合控制器设计   总被引:2,自引:0,他引:2  
研究了一类时变滞后的不确定线性系统的控制综合问题。基于Lyapunov方法提出了一种含滞后补偿的鲁棒控制设计方法,给出了一个使得系统鲁棒稳定的包含无记忆和有记忆的状态反馈控制器。提出一种新的凸优化算法用于复合控制器设计,能保证在给定的不确定性范围内求得一个使系统镇定的次优解。  相似文献   

4.
The present work addresses the problem of ensuring robust stability to time delayed plants, compensated with continuous‐time high frequency periodic controller. An efficient design methodology is proposed to synthesize the periodic controller for robust compensation of time delayed linear time‐invariant plants. The periodic controller, by virtue of its loop zero‐placement capability, is shown to achieve superior gain as well as phase/delay margin compensation, especially for non‐minimum phase plants having right half plane poles and zeros in close vicinity to each other. The periodic controller is considered in the observable canonical form which results in realizable bounded control input as well as ensuring insignificant periodic oscillations in the plant output. As a consequence, this paper, furthermore, establishes the fact that the periodic controller designed and synthesized with the proposed methodology can be implemented in real‐time with an assurance of model matching and robust zero‐error tracking. Simulation and experimental results are illustrated to establish the veracity of the claims. The closed‐loop system comprising of time‐delayed linear time‐invariant plant with the periodic controller is analyzed employing the averaging principle and presented here explicitly in a meticulous approach. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

5.
A systematic approach to design a nonlinear controller using minimax linear quadratic Gaussian regulator (LQG) control is proposed for a class of multi‐input multi‐output nonlinear uncertain systems. In this approach, a robust feedback linearization method and a notion of uncertain diffeomorphism are used to obtain an uncertain linearized model for the corresponding uncertain nonlinear system. A robust minimax LQG controller is then proposed for reference command tracking and stabilization of the nonlinear system in the presence of uncertain parameters. The uncertainties are assumed to satisfy a certain integral quadratic constraint condition. In this method, conventional feedback linearization is used to cancel nominal nonlinear terms and the uncertain nonlinear terms are linearized in a robust way. To demonstrate the effectiveness of the proposed approach, a minimax LQG‐based robust controller is designed for a nonlinear uncertain model of an air‐breathing hypersonic flight vehicle (AHFV) with flexibility and input coupling. Here, the problem of constructing a guaranteed cost controller which minimizes a guaranteed cost bound has been considered and the tracking of velocity and altitude is achieved under inertial and aerodynamic uncertainties.  相似文献   

6.
This paper addresses the output feedback tracking control of a class of multiple‐input and multiple‐output nonlinear systems subject to time‐varying input delay and additive bounded disturbances. Based on the backstepping design approach, an output feedback robust controller is proposed by integrating an extended state observer and a novel robust controller, which uses a desired trajectory‐based feedforward term to achieve an improved model compensation and a robust delay compensation feedback term based on the finite integral of the past control values to compensate for the time‐varying input delay. The extended state observer can simultaneously estimate the unmeasurable system states and the additive disturbances only with the output measurement and delayed control input. The proposed controller theoretically guarantees prescribed transient performance and steady‐state tracking accuracy in spite of the presence of time‐varying input delay and additive bounded disturbances based on Lyapunov stability analysis by using a Lyapunov‐Krasovskii functional. A specific study on a 2‐link robot manipulator is performed; based on the system model and the proposed design procedure, a suitable controller is developed, and comparative simulation results are obtained to demonstrate the effectiveness of the developed control scheme.  相似文献   

7.
In this paper, a robust parametric cerebellar model articulation controller (RP-CMAC) with self-generating design, called RPCSGD, is proposed for uncertain nonlinear systems. The proposed controller consists of two parts: one is the parametric CMAC with self-generating design (PCSGD), which is utilized to approximate the ideal controller and the other is the robust controller, which is designed to achieve a specified H robust tracking performance of the system. The corresponding memory size of the proposed controller can be suitably constructed via the self-generating design. Thus, the useless or untrained memories will not take possession of the space. Besides, the concept of sliding-mode control (SMC) is adopted so that the proposed controller has more robustness against the approximated error and uncertainties. The stability of the system can be guaranteed surely due to the derivations of the adaptive laws of the proposed RPCSGD based on the Lyapunov function. Finally, the proposed controller is applied to the second-order chaotic system and the one-link rigid robotic manipulator. The tracking performance and effectiveness of the proposed controller are verified by simulations of the computer.  相似文献   

8.
Tail‐sitter unmanned aerial vehicles (UAVs) can flight as rotorcrafts as well as fixed‐wing aircrafts, but it is hard to control the flight mode transition. The vehicle dynamics involves serious parametric uncertainties, highly nonlinear dynamics, and is easy to be affected by external disturbances, especially during the mode transition. This paper presents a robust control method for a kind of tail‐sitter UAVs to achieve the flight mode transition. The robust controller is proposed based on the state‐feedback control scheme and the robust compensation method. The proposed control method does not need to switch the coordinate system, the controller structure, or the controller parameters during the mode transitions. Theoretical analysis is given to guarantee the robustness stability of the designed flight control system. Numerical simulation results are presented to show the advantages of the proposed control method compared with the state‐feedback control method and the sliding mode control approach.  相似文献   

9.
In this paper, a robust tracking controller is proposed for the trajectory tracking problem of a dual‐arm wheeled mobile manipulator subject to some modeling uncertainties and external disturbances. Based on backstepping techniques, the design procedure is divided into two levels. In the kinematic level, the auxiliary velocity commands for each subsystem are first presented. A sliding‐mode equivalent controller, composed of neural network control, robust scheme and proportional control, is constructed in the dynamic level to deal with the dynamic effect. To deal with inadequate modeling and parameter uncertainties, the neural network controller is used to mimic the sliding‐mode equivalent control law; the robust controller is designed to compensate for the approximation error and to incorporate the system dynamics into the sliding manifold. The proportional controller is added to improve the system's transient performance, which may be degraded by the neural network's random initialization. All the parameter adjustment rules for the proposed controller are derived from the Lyapunov stability theory and e‐modification such that uniform ultimate boundedness (UUB) can be assured. A comparative simulation study with different controllers is included to illustrate the effectiveness of the proposed method.  相似文献   

10.
In this paper, a new adaptive robust control scheme is developed for a class of uncertain dynamical systems with time‐varying state delay, unknown parameters and disturbances. By incorporating adaptive techniques into the robust control method, we propose a continuous adaptive robust controller which guarantees the uniform boundedness of the system and at the same time, the regulating error enters an arbitrarily designated zone in a finite time. The proposed controller is independent of the time‐delay, hence it is applicable to a class of dynamical systems with uncertain time delays. The paper includes simulation studies demonstrating the performance of the proposed control scheme.  相似文献   

11.
In this paper, an adaptive robust controller is designed for a class of uncertain nonlinear cascade systems with multiple time‐varying delays under external disturbance. It is assumed that multiple time‐varying delays are not exactly known and, therefore, the delayed terms must not appear in the adaptation and control laws. Accordingly, by using a Lyapunov‐Krasovskii function, delays are deleted from the adaptation and control laws. A controller based on an adaptive backstepping approach is designed to assure the global asymptotic tracking of the desired output and boundedness of the other states. The proposed controller is proved to be robust against unknown time‐varying delays and external disturbances applying to the system. Simulation results are provided to show the effectiveness of the proposed approach.  相似文献   

12.
The concept of input‐to‐state stability (ISS) is important in robust control, as the state of an ISS system subject to disturbances can be stably regulated to a small region around the origin. In this study, the ISS property of the rigid‐body attitude system with quaternion representation is thoroughly investigated. It has been known that the closed loop with continuous controllers is not ISS with respect to arbitrarily small external disturbances. To deal with this problem, hybrid proportional‐derivative controllers with hysteresis are proposed to render the attitude system ISS. The controller is far from new, but it is investigated in a new aspect. To illustrate the applications of the results about ISS, 2 new robust hybrid controllers are designed. In the case of large bounded time‐varying disturbances, the hybrid proportional‐derivative controller is designed to incorporate a saturated high‐gain feedback term, and arbitrarily small ultimate bounds of the state can be obtained; in the case of constant disturbances, a hybrid adaptive controller is proposed, which is robust against small estimate error of inertia matrix. Finally, simulations are conducted to illustrate the effectiveness of the proposed control strategies.  相似文献   

13.
This paper addresses the issues of conservativeness and computational complexity of robust control. A new probabilistic robust control method is proposed to design a high performance controller. The key of the new method is that the uncertainty set is divided into two parts: r‐subset and the complementary set of r‐subset. The contributions of the new method are as follows: (i) a deterministic robust controller is designed for r‐subset, so it has less conservative than those designed by using deterministic robust control method for the full set; and (ii) the probabilistic robustness of the designed controller is evaluated just for the complementary set of r‐subset but not for the full set, so the computational complexity of the new method is reduced. Given expected probability robustness, a pertinent probabilistic robust controller can be designed by adjusting the norm boundary of r‐subset. The effectiveness of the proposed method is verified by the simulation example.  相似文献   

14.
This paper deals with the synchronized motion trajectory tracking control problem of multiple pneumatic cylinders. An adaptive robust synchronization controller is developed by incorporating the cross‐coupling technology into the integrated direct/indirect adaptive robust control (DIARC) architecture. The position synchronization error and the trajectory tracking error of each cylinder are combined to construct the so‐called coupled position error. The proposed adaptive robust synchronization controller is designed with the feedback of this coupled position error and is composed of two parts: an on‐line parameter estimation algorithm and a robust control law. The former is employed to obtain accurate estimates of model parameters for reducing the extent of parametric uncertainties, while the latter is utilized to attenuate the effects of parameter estimation errors, unmodelled dynamics, and external disturbances. Theoretically, both the position synchronization and trajectory tracking errors will achieve asymptotic convergence simultaneously. Moreover, the effectiveness of the proposed controller is verified by the extensive experimental results performed on a two‐cylinder pneumatic system.  相似文献   

15.
In this study, we present a new robust continuous controller mechanism for the tracking problem of uncertain nonlinear systems. The proposed strategy is based on a Lyapunov‐type stability argument and only requires the uncertainties of the dynamical system to be the first‐order differentiable to achieve asymptotic practical tracking. For the ease of presentation, the controller formulation is presented on a general, second‐order dynamical system, extension to higher order versions are also possible with a considerably small effort. Simulation studies comparing the performance of the proposed method with the classical Sliding mode and robust integral of the sign of the error controller are presented to illustrate the performance and the feasibility of the proposed strategy. Experimental validation on a two link direct drive robot manipulator are also included to illustrate the implementability of the proposed method. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

16.
The output tracking controller design problem is dealt with for a class of nonlinear semi‐strict feedback systems in the presence of mismatched nonlinear uncertainties, external disturbances, and uncertain nonlinear virtual control coefficients of the subsystems. The controller is designed in a backstepping manner, and to avoid the shortcoming of ‘explosion of terms’, the dynamic surface control technique that employs a group of first‐order low‐pass filters is adopted. At each step of the virtual controller design, a robust feedback controller employing some effective nonlinear damping terms is designed to guarantee input‐to‐state practical stable property of the corresponding subsystem, so that the system states remain in the feasible domain. The virtual controller is enhanced by a finite‐time disturbance observer that estimates the disturbance term in a finite‐time. The properties of the composite control system are analyzed theoretically. Furthermore, by exploiting the cascaded structure of the control system, a simplified robust controller is proposed where only the first subsystem employs a disturbance observer. The performance of the proposed methods is confirmed by numerical examples. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

17.
针对一类基于T-S模糊模型描述的非线性时滞系统,研究在一般执行器故障模式下的含时滞记忆的鲁棒H∞容错控制器设计问题.针对任意连续型执行器故障模式,采用并行分布式补偿原理设计含记忆型状态反馈控制器,给出非线性时滞系统在执行器发生故障情况下的鲁棒镇定准则.然后给出H∞性能指标约束下的满意容错控制器的设计方法和设计步骤.提出的含时滞记忆的状态反馈控制方法可以确保当执行器发生故障时,闭环系统不仅具有渐近稳定性,而且有一定的抗扰动性能,状态反馈控制器设计的保守性较不含时滞记忆控制器设计方法大大降低.仿真实例验证了鲁棒容错控制策略的有效性.  相似文献   

18.
In this paper, a low‐complexity robust estimation‐free decentralized prescribed performance control scheme is proposed and analyzed for nonaffine nonlinear large‐scale systems in the presence of unknown nonlinearity and external disturbance. To tackle the high‐order dynamics of each tracking error subsystem, a time‐varying stable manifold involving the output tracking error and its high‐order derivatives is constructed, which is strictly evolved within the envelope of user‐specialized prescribed performance. Sequentially, a robust decentralized controller is devised for each manifold, under which the output tracking error and its high‐order derivatives are proven to converge asymptotically to a small residual domain with prescribed fast convergence rate. Additionally, no specialized approximation technique, adaptive scheme, and disturbance observer are needed, which alleviates the complexity and difficulty of robust decentralized controller design dramatically. Finally, 3 groups of illustrative examples are used to validate the effectiveness of the proposed low‐complexity robust decentralized control scheme for uncertain nonaffine nonlinear large‐scale systems.  相似文献   

19.
This paper considers the tracking problem of a delayed uncertain first‐order system which is simultaneously subject to (possibly large) known input delay, unknown but bounded time‐varying disturbance, and unknown plant parameter. The proposed predictor adaptive robust controller (PARC) involves prediction‐based projection type adaptation laws with model compensation and prediction‐based continuous robust feedback such that the closed loop system has global exponential convergence with an ultimate bound proportional to delay, disturbance bound, and switching gain. Further, if there are only delay and parameter uncertainties after some finite time, then semi‐global asymptotic tracking is guaranteed. The proposed design is shown to have significant closed loop performance improvement over the baseline controller.  相似文献   

20.
This paper proposes a systematic technique to design multiple robust H controllers. The proposed technique achieves a desired robust performance objective, which is impossible to achieve with a single robust controller, by dividing the uncertainty set into several subsets and by designing a robust controller to each subset. To achieve this goal with a small number of divisions of the uncertainty set, an optimization problem is formulated. Since the cost function of this optimization problem is not a smooth function, a numerical nonsmooth optimization algorithm is proposed to solve this problem. This method avoids the use of Lyapunov variables, and therefore it leads to a moderate size optimization problem. A numerical example shows that the proposed multiple robust control method can improve the closed‐loop performance when a single robust controller cannot achieve satisfactory performance. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号