首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
A series of alternating copolymers of cyclopenta[2,1‐b;3,4‐b′]dithiophene (CPDT) and thieno[3,4‐c]pyrrole‐4,6‐dione (TPD) have been prepared and characterized for polymer solar cell (PSC) applications. Different alkyl side chains, including butyl (Bu), hexyl (He), octyl (Oc), and 2‐ethylhexyl (EH), are introduced to the TPD unit in order to adjust the packing of the polymer chain in the solid state, while the hexyl side chain on the CPDT unit remains unchanged to simplify discussion. The polymers in this series have a simple main chain structure and can be synthesized easily, have a narrow band gap and a broad light absorption. The different alkyl chains on the TPD unit not only significantly influence the solubility and chain packing, but also fine tune the energy levels of the polymers. The polymers with Oc or EH group have lower HOMO (highest occupied molecular orbital) and LUMO (lowest unoccupied molecular orbital) energy levels, resulting higher open circuit voltages (Voc) of the PSC devices. Power conversion efficiencies (PCEs) up to 5.5% and 6.4% are obtained from the devices of the Oc substituted polymer (PCPDTTPD‐Oc) with PC61BM and PC71BM, respectively. This side chain effect on the PSC performance is related to the formation of a fine bulk heterojunction structure of polymer and PCBM domains, as observed with atomic force microscopy.  相似文献   

2.
Tandem solar cell structures require a high‐performance wide band gap absorber as top cell. A possible candidate is CuGaSe2, with a fundamental band gap of 1.7 eV. However, a significant open‐circuit voltage deficit is often reported for wide band gap chalcopyrite solar cells like CuGaSe2. In this paper, we show that the open‐circuit voltage can be drastically improved in wide band gap p‐Cu(In,Ga)Se2 and p‐CuGaSe2 devices by improving the conduction band alignment to the n‐type buffer layer. This is accomplished by using Zn1−x Snx Oy , grown by atomic layer deposition, as a buffer layer. In this case, the conduction band level can be adapted to an almost perfect fit to the wide band gap Cu(In,Ga)Se2 and CuGaSe2 materials. With an improved buffer band alignment for CuGaSe2 absorbers, evaporated in a 3‐stage type process, we show devices exhibiting open‐circuit voltages up to 1017 mV, and efficiencies up to 11.9%. This is to the best of our knowledge the highest reported open‐circuit voltage and efficiency for a CuGaSe2 device. Temperature‐dependent current‐voltage measurements show that the high open‐circuit voltage is explained by reduced interface recombination, which makes it possible to separate the influence of absorber quality from interface recombination in future studies.  相似文献   

3.
Two low band gap polymers (PIDT2FBT and PIDT4FBZ), which are composed of fluorinated elctron donor units (dithienyldifluorobenzothiadiazole (DT2FBT) and dithienyltetrafluorobenzene (DT4FBZ)) and a isoindigo electron accepting unit were implemented in a photoactive layer to invesitigate thier photovoltaic performance. Both low band gap polymers possess exhibit low-lying energy levels and extended light absorption range, which are essential to generate high open circuit voltage and short circuit current density of polymer solar cell. In addition, the blend with PC71BM formed affirmative bulk heterojunction mrophology, resulting in promising power conversion efficiency up to 4.1% with high openc circuit voltage exceeding 1.1 V. Furthremore, the low-lying energy levels of the polymers leaded to good ambient stability of the devices up to 250 h, enabling PIDT2FBT and PIDT4FBZ to be promising candidates for photoactive layer of ambient stable polymer solar cells.  相似文献   

4.
A multi‐ring, ladder‐type low band‐gap polymer (PIDTCPDT‐DFBT) is developed to show enhanced light harvesting, charge transport, and photovoltaic performance. It possesses excellent planarity and enhanced effective conjugation length compared to the previously reported fused‐ring polymers. In order to understand the effect of extended fused‐ring on the electronic and optical properties of this polymer, a partially fused polymer PIDTT‐T‐DFBT is also synthesized for comparison. The fully rigidified polymer provides lower reorganizational energy, resulting in one order higher hole mobility than the reference polymer. The device made from PIDTCPDT‐DFBT also shows a quite promising power conversion efficiency of 6.46%. Its short‐circuit current (14.59 mA cm?2) is also among the highest reported for ladder‐type polymers. These results show that extending conjugation length in fused‐ring ladder polymers is an effective way to reduce band‐gap and improve charge transport for efficient photovoltaic devices.  相似文献   

5.
A high band‐gap (~1.55 eV) chalcopyrite compound film (CuInGaS2) was synthesized by a precursor solution‐based coating method with an oxidation and a sulfurization heat treatment process. The film revealed two distinct morphologies: a densely packed bulk layer and a rough surface layer. We found that the rough surface is attributed to the formation of Ga deficient CuInGaS2 crystallites. Because of the high band‐gap optical property of the CuInGaS2 absorber film, a solar cell device with this film showed a relatively high open circuit voltage (~787 mV) with a power conversion efficiency of 8.28% under standard irradiation conditions. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

6.
Two new low band gap conjugated polymers containing a benzo[1,2-b:4,5-b′]dithiophene donor unit and a tetrazine acceptor unit were synthesized by Stille cross-coupling polymerization. The structural and thermal properties of copolymers were characterized using nuclear magnetic resonance, gel permeation chromatography and thermogravimetric analysis. The results show that the donor–acceptor copolymers thus developed have good thermal stability with decomposition temperature of 294 °C and 305 °C. Cyclic voltammetric study revealed that the copolymers possess a deep-lying highest occupied molecular orbital energy level, which is desired for high open circuit voltage polymer solar cells (PSCs) and is also favorable for stable device operation in air. Bulk-heterojunction PSCs based on blend of low band gap copolymers: [6,6]-phenyl-C71-butyric acid methyl ester on indium tin oxide/glass substrates were fabricated. This work yielded a promising power conversion efficiency of >5.0%, with a high open circuit voltage of ~1.0 V, measured under air mass 1.5 global irradiation of 100 mW/cm2.  相似文献   

7.
We report a study of the effects of polymer optoelectronic properties on the performance of photovoltaic devices consisting of nanocrystalline TiO2 and a conjugated polymer. Three different poly(2‐methoxy‐5‐(2′‐ethylhexoxy)‐1,4‐phenylenevinylene) (MEH‐PPV)‐based polymers and a fluorene–bithiophene copolymer are compared. We use photoluminescence quenching, time‐of‐flight mobility measurements, and optical spectroscopy to characterize the exciton‐transport, charge‐transport, and light‐harvesting properties, respectively, of the polymers, and correlate these material properties with photovoltaic‐device performance. We find that photocurrent is primarily limited by the photogeneration rate and by the quality of the interfaces, rather than by hole transport in the polymer. We have also studied the photovoltaic performance of these TiO2/polymer devices as a function of the fabrication route and device design. Including a dip‐coating step before spin‐coating the polymer leads to excellent polymer penetration into highly structured TiO2 networks, as was confirmed through transient optical measurements of the photoinduced charge‐transfer yield and recombination kinetics. Device performance is further improved for all material combinations studied, by introducing a layer of poly(ethylene dioxythiophene) (PEDOT) doped with poly(styrene sulfonic acid) (PSS) under the top contact. Optimized devices incorporating the additional dip‐coated and PEDOT:PSS layers produced a short‐circuit current density of about 1 mA cm–2, a fill factor of 0.50, and an open‐circuit voltage of 0.86 V under simulated AM 1.5 illumination (100 mW cm–2, 1 sun). The corresponding power conversion efficiency under 1 sun was ≥ 0.4 %.  相似文献   

8.
This study demonstrated the feasibility of fabricating a highly stacked vertically aligned InGaAs/GaAs(Sb) quantum dot (QD) structure with an AlGaAsSb spacer layer for improving the device performance of QD intermediate‐band solar cell (QD‐IBSC) devices. The power‐dependent photoluminescence measurements of the proposed structure revealed a blueshift in the QD ground‐state emissions when the excitation power was increased, indicating the formation of an intermediate band inside the QD structure. Capping the InGaAs QDs with a GaAsSb layer prevented the QDs from collapsing because there was less In–Ga intermixing between the QDs and GaAsSb layer. In addition to maintaining the QD structure, the carrier lifetime was extended by tuning the energy band alignment of the InGaAs/GaAsSb QD structure. Inserting the AlGaAsSb layer into the spacer layer increased the band gap, which in turn increased the open‐circuit voltage of the QD‐IBSC. The QD‐IBSC in this work shows an extension of external‐quantum efficiency by up to 1200 nm (compared with a GaAs reference cell) through the absorption by QDs and increased the open‐circuit voltage from 0.67 to 0.70 V by adopting the AlGaAsSb spacer layer. These results confirm that adopting a columnar InGaAs/GaAs(Sb) QD structure with a AlGaAsSb spacer layer can enhance the performance of QD‐IBSC devices. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

9.
We present an approach for deposition of highly conductive nominally undoped ZnO films that are suitable for the n‐type window of low band gap solar cells. We demonstrate that low‐voltage radio frequency (RF) biasing of growing ZnO films during their deposition by non‐reactive sputtering makes them as conductive as when doped by aluminium (ρ≤1·10−3Ω cm). The films prepared with additional RF biasing possess lower free‐carrier concentration and higher free‐carrier mobility than Al‐doped ZnO (AZO) films of the same resistivity, which results in a substantially higher transparency in the near infrared region (NIR). Furthermore, these films exhibit good ambient stability and lower high‐temperature stability than the AZO films of the same thickness. We also present the characteristics of Cu(InGa)Se2, CuInSe2 and Cu2ZnSnSe4‐based solar cells prepared with the transparent window bilayer formed of the isolating and conductive ZnO films and compare them to their counterparts with a standard ZnO/AZO bilayer. We show that the solar cells with nominally undoped ZnO as their transparent conductive oxide layer exhibit an improved quantum efficiency for λ > 900 nm, which leads to a higher short circuit current density JSC. This aspect is specifically beneficial in preparation of the Cu2ZnSnSe4 solar cells with band gap down to 0.85 eV; our champion device reached a JSC of nearly 39 mAcm−2, an open circuit voltage of 378mV, and a power conversion efficiency of 8.4 %. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

10.
This paper presents the temperature dependence measurements characterisation of several InAs/GaAs quantum dots (QDs) solar cell devices. The devices with cylindrical geometry were fabricated and characterised on-wafer under 20 suns in a temperature range from 300°K to 430°K. The temperature dependence parameters such as open circuit voltage, short circuit density current, fill factor and efficiency are studied in detail. The increase of temperature produces an enhancement of the short circuit current. However, the open circuit voltage is degraded because the temperature increases the recombination phenomena involved, as well as reducing the effective band gap of the semiconductor.  相似文献   

11.
We applied pulse‐shaped biasing (PSB) to the expanding thermal plasma deposition of intrinsic hydrogenated amorphous silicon layers at substrate temperatures of 200 °C and growth rates of about 1 nm/s. Fourier transform infrared spectroscopy of intrinsic films showed a densification with increasing deposited energy and a reduction in void content, whereas dual‐beam photoconductivity measurements showed an increase in Urbach energy above 4.8 eV/Si atom. From dark conductivity and photoconductivity measurements, we determined a maximum photoresponse of 2 × 106 at 3 eV/Si atom, which decreased at higher deposited energies because of a higher dark conductivity as a result of a lower band gap. p–i–n solar cells with PSB applied during the intrinsic layer deposition showed initial energy conversion efficiencies of 7.4% at around 1 eV/Si atom. Decreasing open‐circuit voltage at >1 eV/Si atom can be related to a lower band gap, whereas the short‐circuit current drops at >4.8 eV/Si atom, predominantly because of hole collection losses as determined from quantum efficiency measurements. The reduced fill factor for >1 eV/Si atom was presumably related to a decrease in mobility‐lifetime product because of an increase in defect density. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

12.
The incorporation of an electron reflector is a proposed strategy to improve the open‐circuit voltage of CdTe solar cells. An electron reflector is a conduction‐band barrier that can effectively reduce electron recombination at the back surface. In this work, the electron‐reflector strategy is numerically applied to a thin‐film CdTe record‐cell baseline model (efficiency = 16.5%). Simulation shows that to have the optimal effect from an electron reflector, the CdTe thickness should be on the order of 1 µm, or slightly lower if the optical reflection at the back surface can be enhanced. Efficiency above 19% should be achievable with a 0.2‐eV electron reflector and currently achievable parameters (1014‐cm−3 hole density and 1‐ns lifetime). Moreover, efficiency above 20% should be possible at a 1‐µm absorber layer if large optical back reflection can also be achieved. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

13.
Polycyclic aromatics offer great flexibility in tuning the energy levels and bandgaps of resulting conjugated polymers. These features have been exploited in the recent examples of benzo[2,1‐b:3,4‐b']dithiophene ( BDT )‐based polymers for bulk heterojunction (BHJ) photovoltaics (ACS Appl. Mater. Interfaces 2009 , 1, 1613). Taking one step further, a simple oxidative photocyclization is used here to convert the BDT with two pendent thiophene units into an enlarged planar polycyclic aromatic ring— q uadra t hieno n aphthalene ( QTN ). The reduced steric hindrance and more planar structure promotes the intermolecular interaction of QTN‐ based polymers, leading to increased hole mobility in related polymers. As‐synthesized homopolymer ( HMPQTN ) and donor–acceptor polymer ( PQTN ‐ BT ) maintain a low highest occupied molecular orbital (HOMO) energy level, ascribable to the polycyclic aromatic ( QTN ) moiety, which leads to a good open‐circuit voltage in BHJ devices of these polymers blended with PCBM ([6,6]‐phenyl‐C61‐butyric acid methyl ester; HMPQTN : 0.76 V, PQTN ‐ BT : 0.72 V). The donor–acceptor polymer ( PQTN ‐ BT ) has a smaller optical bandgap (1.6 eV) than that of HMPQTN (2.0 eV), which explains its current (5.69 mA cm?2) being slightly higher than that of HMPQTN (5.02 mA cm?2). Overall efficiencies over 2% are achieved for BHJ devices fabricated from either polymer with PCBM as the acceptor.  相似文献   

14.
A cylindrical transparent conductive oxide‐less dye‐sensitized solar cell (DSSC) consisting of glass tube/stainless steel mesh–TiO2–dye/gel electrolytes/Pt‐Ti rod having capability of self‐light trapping is reported. Replacing the glass tube with heat‐shrinkable tube to reduce electrolyte gap and optical loss due to light transmission and reflection led to the enhancement in the power conversion efficiency from 2.61% to 3.91%. Profiling of the current distribution measured by laser beam‐induced current exhibited nearly the same current in the axial and radial directions, suggesting that light reflection on a cylindrical DSSC does not affect the efficiency seriously. Optimized best DSSC in this novel device architecture gave a short‐circuit current density of 11.94 mA/cm2, an open‐circuit voltage of 0.71 V and a fill factor of 0.66 leading to the power conversion efficiency of 5.58% at AM 1.5 under simulated solar irradiation. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

15.
This paper deals with the temperature impact on the IV curve of concentrator photovoltaic (CPV) modules equipped with III–V triple‐junction solar cells. The electrical parameters of three FLATCON® type CPV modules are investigated using a sun simulator, where the module temperatures are varied by heating with infrared (IR) bulbs. It is found that all electrical parameters vary linearly to a change of temperature. The open circuit voltages and the fill factors (FFs) of the CPV modules decrease with increasing temperature. The relative decrease in open circuit voltage of the CPV modules is similar to the value of individual triple‐junction solar cells. In contrast, the short circuit current temperature coefficients are found to be different. The experimental results can be explained by considering thermal expansion effects in the module and temperature dependencies of the optical efficiencies of the Fresnel lenses. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

16.
Recent progress in fabricating Cd‐ and Se‐free wide‐gap chalcopyrite thin‐film solar devices with Zn(S,O) buffer layers prepared by an alternative chemical bath process (CBD) using thiourea as complexing agent is discussed. Zn(S,O) has a larger band gap (Eg = 3·6–3·8 eV) than the conventional buffer material CdS (Eg = 2·4 eV) currently used in chalcopyrite‐based thin films solar cells. Thus, Zn(S,O) is a potential alternative buffer material, which already results in Cd‐free solar cell devices with increased spectral response in the blue wavelength region if low‐gap chalcopyrites are used. Suitable conditions for reproducible deposition of good‐quality Zn(S,O) thin films on wide‐gap CuInS2 (‘CIS’) absorbers have been identified for an alternative, low‐temperature chemical route. The thickness of the different Zn(S,O) buffers and the coverage of the CIS absorber by those layers as well as their surface composition were controlled by scanning electron microscopy, X‐ray photoelectron spectroscopy, and X‐ray excited Auger electron spectroscopy. The minimum thickness required for a complete coverage of the rough CIS absorber by a Zn(S,O) layer deposited by this CBD process was estimated to ∼15 nm. The high transparency of this Zn(S,O) buffer layer in the short‐wavelength region leads to an increase of ∼1 mA/cm2 in the short‐circuit current density of corresponding CIS‐based solar cells. Active area efficiencies exceeding 11·0% (total area: 10·4%) have been achieved for the first time, with an open circuit voltage of 700·4 mV, a fill factor of 65·8% and a short‐circuit current density of 24·5 mA/cm2 (total area: 22·5 mA/cm2). These results are comparable to the performance of CdS buffered reference cells. First integrated series interconnected mini‐modules on 5 × 5 cm2 substrates have been prepared and already reach an efficiency (active area: 17·2 cm2) of above 8%. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

17.
Here, we report on the dual functionality of tungsten oxide for application as an efficient electron and hole injection/transport layer in organic light‐emitting diodes (OLEDs). We demonstrate hybrid polymer light‐emitting diodes (Hy‐PLEDs), based on a polyfluorene copolymer, by inserting a very thin layer of a partially reduced tungsten oxide, WO2.5, at the polymer/Al cathode interface to serve as an electron injection and transport layer. Significantly improved current densities, luminances, and luminous efficiencies were achieved, primarily as a result of improved electron injection at the interface with Al and transport to the lowest unoccupied molecular orbital (LUMO) of the polymer, with a corresponding lowering of the device driving voltage. Using a combination of optical absorption, ultraviolet spectoscopy, X‐ray photoelectron spectroscopy, and photovoltaic open circuit voltage measurements, we demonstrate that partial reduction of the WO3 to WO2.5 results in the appearance of new gap states just below the conduction band edge in the previously forbidden gap. The new gap states are proposed to act as a reservoir of donor electrons for enhanced injection and transport to the polymer LUMO and decrease the effective cathode workfunction. Moreover, when a thin tungsten oxide film in its fully oxidized state (WO3) is inserted at the ITO anode/polymer interface, further improvement in device characteristics was achieved. Since both fully oxidized and partially reduced tungsten oxide layers can be deposited in the same chamber with well controlled morphology, this work paves the way for the facile fabrication of efficient and stable Hy‐OLEDs with excellent reproducibility.  相似文献   

18.
We review several material properties thought to be important for the production of high efficiency amorphous semi-conductor Schottky barrier solar cells, with particular reference to a systematic study made in this laboratory of amorphous Si:H alloys prepared by rf sputtering. These requirements include: (a) an optical gap which efficiently absorbs the solar spectrum in a thin film, (b) a Fermi level position close to the conduction band for a large work function difference between metal and semiconductor, (c) high photoconductivity, (d) long carrier migration lengths, and (e) a low overall density of gap states. Using our data on these electronic properties, we show that we can satisfy these conditions somewhat by depositing at an argon pressure of 20 mTorr. Furthermore, we demonstrate, using a simple Schottky barrier structure, that significant improvements in device performance are achieved, particularly in open circuit voltage, as the above properties are optimized. Other factors which might still limit the performance of the device are discussed, and from an examination of the temperature dependence of the short circuit current, we conclude that the most likely to be important is the “effective” diffusion length for valence band holes.  相似文献   

19.
For an ideal solar cell, a maximum solar‐to‐electrical power conversion efficiency of just over 30% is achievable by harvesting UV to near IR photons up to 1.1 eV. Dye‐sensitized solar cells (DSCs) are, however, not ideal. Here, the electrical and optical losses in the dye‐sensitized system are reviewed, and the main losses in potential from the conversion of an absorbed photon at the optical bandgap of the sensitizer to the open‐circuit voltage generated by the solar cell are specifically highlighted. In the first instance, the maximum power conversion efficiency attainable as a function of optical bandgap of the sensitizer and the “loss‐in‐potential” from the optical bandgap to the open‐circuit voltage is estimated. For the best performing DSCs with current technology, the loss‐in‐potential is ~0.75 eV, which leads to a maximum power‐conversion efficiency of 13.4% with an optical bandgap of 1.48 eV (840 nm absorption onset). Means by which the loss‐in‐potential could be reduced to 0.4 eV are discussed; a maximum efficiency of 20.25% with an optical bandgap of 1.31 eV (940 nm) is possible if this is achieved.  相似文献   

20.
采用Afors-het太阳能电池异质结模拟软件,模拟了在不同工作温度下微晶硅背场对a-Si(n)/c-Si(p)异质结太阳能电池性能的影响。结果表明,随着背场带隙的增加,开路电压和转化效率都增大。随着背场掺杂浓度的增加,开路电压、填充因子和转化效率都在不断地增加;随着背场厚度的增加,电池性能有所下降。随着电池工作温度的上升,微晶硅背场所对应的最佳浓度掺杂值和最佳厚度值变化不大。但是随着温度的上升,微晶硅背场所对应的最佳带隙值有明显的右移趋势。实验结果为电池的商业化生产提供了实验参数。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号