首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The crosslinked poly(1‐vinylimidazole‐co‐acrylic acid), P(VIm‐co‐AA), and poly(1‐vinylimidazole‐co‐2‐acrylamido‐2‐methyl‐1‐propane sulfonic acid) P(VIm‐co‐APSA) were synthesized by radical polymerization and tested as adsorbents under competitive and noncompetitive conditions for Cu(II), Cd(II), Hg(II), Zn(II), Pb(II), and Cr(III) by batch equilibrium procedure. The resin–metal ion equilibrium was achieved before 1 h. The resin P(VIm‐co‐AA) showed a maximum retention capacity (MRC) value for Pb(II) at pH 3 and Hg(II) at pH 1 of 1.1 and 1.2 mEq/g, respectively, and the resin P(VIm‐co‐AA) showed at pH 3 the following MRC values: Hg(II) (1.5 mEq/g), Cd(II) (1.9 mEq/g), Zn(II) (2.7 mEq/g), and Cr(III) (2.8 mEq/g). The recovery of the resin was investigated at 25°C with 1 M and 4 M HNO3 and 1 M and 4 M HClO4. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 89: 2852–2856, 2003  相似文献   

2.
A series of novel snake‐cage resins were synthesized using carboxymethyl chitosan (CM‐CTS) as the snake resin and urea–formaldehyde resin (UF) as the cage resin. Such factors as the optimal synthesis conditions, content of the crosslinking agent, and sorption capacities for metal ions of the above‐mentioned resins were investigated. The experimental results show that these resins have appropriate swelling properties and good mechanical stability. They do not run off in water, HCl, and NaOH aqueous solutions. To form a stable network system, NH4Cl was used as a crosslinking agent to crosslink urea and formaldehyde in synthesis. The sorption experiment showed that the sorption properties of the resins in the presence of the crosslinking agent NH4Cl are better than those without a crosslinking agent. The investigation of the FTIR spectra indicated that the chelate groups, such as —OH, —CO and NHCH2CO, in snake‐resin molecules participated in the coordination with the metal ions, but the —C?O bonds in the cage resin UF did not. The snake resin CM‐CTS in the snake‐cage resins was the major contributor of sorption. The sorption dynamics showed that the sorption was controlled by liquid film diffusion. The isotherms can be described by Freundlich and Langmuir equations. The saturated sorption capacities of the resins for Cu2+, Ni2+, Zn2+, and Pb2+ were 1.48, 0.78, 0.13, and 0.02 mmol g?1, respectively. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 84: 310–317, 2002; DOI 10.1002/app.10331  相似文献   

3.
Terpolymers (2,4‐DHPBF) were synthesized by the condensation of 2,4‐dihydro‐xypropiophenone, biuret, and formaldehyde in the presence of acid catalyst with varying the molar ratio of reacting monomers. Terpolymer composition has been determined on the basis of their elemental analysis and their number–average molecular weight of these resin were determined by conductometric titration in nonaqueous medium. The viscosity measurements were carried out in N,N‐dimethyl formamide which indicate normal behavior. IR spectra were studied to elucidate the structure. The terpolymer resin has been further characterized by UV–visible and 1H‐NMR spectra. The newly synthesized terpolymers proved to be selective chelating ion‐exchange terpolymers for certain metals. The chelating ion‐exchange properties of this terpolymer was studied for Fe (III), Cu (II), Hg (II), Cd (II), Co (II), Zn (II), Ni (II), and Pb (II) ions. A batch equilibrium method was employed in the study of the selectivity of metal ion uptake involving the measurement of the distribution of a given metal ion between the terpolymer sample and a solution containing the metal ion. The study was carried out over a wide pH range and in media of various ionic strengths. The terpolymer showed a higher selectivity for Fe (III), Hg (II), Cd (II), and Pb (II) ions than for Cu (II), Co (II), Zn (II), and Ni (II) ions. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

4.
The adsorption properties, including the adsorption kinetics, adsorption isotherms, and adsorption selectivity, of newly formed chelating resins that contained a heterocyclic functional group and a hydrophilic spacer arm of poly(ethylene glycol) [polystyrene–diethylene glycol–2‐amino‐5‐methylthio‐1,3,4‐thiadizole (PS–DEG–AMTZ) and polystyrene–triethylene glycol–2‐amino‐5‐methylthio‐1,3,4‐thiadizole (PS–TEG–AMTZ)] were studied in detail. The results show that the adsorption kinetics of PS–DEG–AMTZ and PS–TEG–AMTZ for Hg2+ and Ag+ could be described by a pseudo‐second‐order rate equation. The introduction of a spacer arm between the polymeric matrix and functional group was beneficial for increasing the adsorption rates. The apparent activation energies of the resins for Hg2+ and Ag+ were within 20.89–32.32 kJ/mol. The Langmuir model could describe the isothermal process of Hg2+ and Ag+. The competitive adsorption of the resins for Hg2+ and Ag+ in binary mixture systems was also investigated. The results show that Hg2+ and Ag+ were adsorbed before the other metal ions, such as Cu2+, Zn2+, Fe3+, Cd2+, and Pb2+, under competitive conditions. Five adsorption–desorption cycles were conducted for the reuse of the resins. The results indicate that these two resins were suitable for reuse without considerable changes in the adsorption capacity. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

5.
通过接枝反应制备了一系列以聚环氧氟丙烷为主链,侧链末端含吡咯配位基的HPnCP(n=6.4,2)螯合树脂。各步产物的化学结构经IR和^1H NMR检测得以确认。静态吸附实验及等温吸附实验结果表明:该类树脂对Cu(Ⅱ)和Hg(Ⅱ)有着较好的吸附性能(大于1.0mmol/g);对Co(Ⅱ)和Cd(Ⅱ)达到饱和吸附时的平衡浓度约为(0.06~0.07)mol/L;HP4CP对Co(Ⅱ)和Cd(Ⅱ)以及HP2CP对Co(Ⅱ)的等温吸附既可用Langmuir方程描述也可用Freundlich方程描述;但HP2CP时Cd(Ⅱ)的等温吸附不符合Langmuir方程,只可用Freundlich方程描述。  相似文献   

6.
Three magnetic chelating resins containing amino and mercapto groups were prepared by the suspended condensation polymerization of 2‐chloroethoxymethyl thiirane with diamines. The magnetic resins were microbeads whose diameter was in the range of 10 to 45 μm. The structure of the resins was characterized by XPS, IR, and elemental analysis. Their adsorption properties for Hg(II), Au(III), Pd(II), Pt(IV), Ag(I), Cu(II), Zn(II), and Pb(II) were investigated. The experimental results show the magnetic resins have high affinity for Hg(II) and noble metal ions. In the competitive adsorption, the resins predominantly adsorbed Hg(II) or Pd(II) in the coexistence of Cu(II), Zn(II), and Mg(II). Desorption of Pd(II) loaded on the resins was studied by using 2M hydrochloric acid solution containing 1% thiourea as desorbent. A high desorption ratio (up to 96.5%) was observed, and repeated adsorption/desorption operations showed the probability of repeated use of the magnetic resins. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 82: 1587–1592, 2001  相似文献   

7.
Adsorption of low concentration formaldehyde on pitch‐based, rayon‐based, and PAN‐based activated carbon fibers (ACFs) and an unactivated PAN‐based carbon fiber (PAN‐CF) was investigated by a dynamic method. The pore structure and surface chemistry of these samples were characterized by liquid nitrogen adsorption, elemental analysis, and X‐ray photoelectron spectroscopy. Results revealed that the pore structure, especially surface chemical composition, greatly influence the formaldehyde adsorption. PAN‐based ACFs showed the highest formaldehyde adsorption capacity because there are more abundant nitrogen‐containing groups, especially pyrrolic, pyridonic, pyridinic, and quaternary on the surface. The breakthrough time and formaldehyde adsorption capacity of one kind of PAN‐ACF were 361 min and 0.478 mmol/g, respectively. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2007  相似文献   

8.
8‐Hydroxyquinoline‐5‐sulfonic acid–thiourea–formaldehyde copolymer resins were synthesized through the condensation of 8‐hydroxyquinoline‐5‐sulfonic acid and thiourea with formaldehyde in the presence of hydrochloric acid as a catalyst and with various molar ratios of the reacting monomers. The resulting copolymers were characterized with UV‐visible, IR and 1H‐NMR spectral data, employed to determine the reactivity of monomers. The average molecular weights of these resins were determined with vapor pressure osmometry and conductometric titration in a nonaqueous medium. The chelation ion‐exchange properties were also studied with the batch equilibrium method. The resins were proved to be selective chelating ion‐exchange copolymers for certain metals. The chelation ion‐exchange properties of these copolymers were studied for Cu2+, Ni2+, Co2+, Pb2+, and Fe3+ ions. The study was carried out over a wide pH range and in media of various ionic strengths. The copolymers showed a higher selectivity for Fe3+ ions than for Cu2+, Ni2+, Co2+, and Pb2+ ions. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

9.
Chelating resins are useful substances in industry because of their extraordinary adsorption properties for specific metal ions. In this study, a new type of chelating resin is synthesized simply by reaction between thiourea and formaldehyde. The synthetic conditions and the structure of the product are approached and the adsorbing capacities for 11 metal ions, adsorbing rates, and selectivities investigated. The results of the experiments show that the resin has high adsorbing capacities for Ag(I): 13.1 mmol/g, and for Au(III): 6.95 mmol/g. Adsorbing rates are close to 100% in dilute solution. Isothermal adsorbing study reveals that the adsorption is monomolecular layer adsorption process. It is hopeful for the resin to be used for concentrating and retrieving Ag(I) and Au(III) ions from their dilute solutions in industry. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 82: 3127–3132, 2001  相似文献   

10.
Removal of lead ions was investigated by ethylenediamine, triethylenetetramine and tetraethylenepentamine functionalized polymeric adsorbent. Macroporous acrylonitrile-ethylene glycol-dimethacrylate copolymer beads were synthesized by suspension polymerization as already reported.[17] The adsorbent was prepared by amination of copolymer synthesized from acrylonitrile-ethylene glycol-dimethacrylate. The adsorption study for removal of lead ions using functionalized poly(AN-EGDMA) copolymer as an adsorbent was carried out at room temperature at various solution concentrations of 0.483–2.4154 mmol/l at pH 4.6. Functionalized polymers were studied by Fourier transform infrared spectroscopy (FTIR). Scanning electron microscope-X-ray energy dispersive spectrometer (SEM-EDAX) was utilized to study an increase in nitrogen content of functionalized polymers.  相似文献   

11.
Ion‐exchange polymers were used successfully in water‐treatment operations. In this study, three ion‐exchange resins based on 4‐vinylpyridine and divinylbenzene functionalized with N‐oxide groups were obtained. Their ion‐adsorption properties were measured in solutions containing chromium at concentrations of 4 and 500 ppm with column and batch equilibrium techniques. The removal efficiency of the chromium ions with HCl was observed to increase after the protonation of the N‐oxide groups. The resins could be reused after 10 cycles with the metal removal efficiency maintained at higher than 95%. These studies evidenced a strong correlation between the morphology and ionic group content in the resin and its chromium ion sorption capability. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2008  相似文献   

12.
Magnetic polymer microspheres composed of magnetite, styrene, and divinylbenzene were prepared by suspension polymerization to produce magnetic ion‐exchange resins (MIEXs). The magnetite was grafted with oleic acid to improve the magnetic properties of the MIEXs and to prevent the magnetite from flushing out of the MIEXs. The shape and magnetic properties of the magnetic microspheres were investigated with scanning electron microscopy and vibrating‐sample magnetometry. The average diameter of the prepared magnetic polymer microspheres was about 219 μm. The two types of MIEXs were prepared, magnetic cation‐exchange resins (MCEXs) and magnetic anion‐exchange resins (MAEXs). MCEX was prepared by sulfonation of magnetic polymer microspheres, and MAEX was made by a quaternization reaction with triethylamine of chloromethylated magnetic polymer microspheres. With diffuse‐reflectance Fourier transform infrared spectroscopy, elemental analysis, and acid–base titration, the degree of substitution and ion‐exchange capacity of the MIEXs were assessed. The efficiency of each MCEX and MAEX for the purification of contaminated water was examined with Co2+ and NO solutions, respectively. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 89: 2058–2067, 2003  相似文献   

13.
In this study, the strong‐acid polystyrene resin D001 was modified by impregnation with metal ions Fe3+, Cu2+, and Zn2+ to prepare new kinds of sorbents. The modified D001 was characterized by N2 sorption–desorption isotherms, X‐ray powder diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR). The sorption performance of the metal modified resins for removal of antibiotics tetracycline (TC) and doxycycline (DC) from aquatic environment was investigated and excellent sorption capability with more than 98% removal ratio was observed for these resins after modification. Although these modified resins also presented pH‐dependent sorption, they showed much better flexibility with pH fluctuation than those of the unmodified original D001, and extremely strong sorption capability was exhibited in a wide range of pH 2–8 for both TC and DC. Pseudo‐second‐order kinetic equation described the sorption process more reasonably than pseudo‐first‐order equation. Langmuir isotherm model provided the best match to the equilibrium data with monolayer maximum sorption capacity of 417–625 mg g?1 under 288–318 K. The sorption capacity decreased with the increase of ionic strength of NaCl. The main sorption mechanism was proposed to be surface complexation, cation bridge interaction and electrostatic attraction/competition between antibiotics and metal modified resins. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41803.  相似文献   

14.
Completely water‐insoluble resins containing amine, carboxylic acid, and sulfonic acid as ligand groups were synthesized by radical polymerization in solution. The yield was higher than 97%. The resins were characterized by FTIR spectroscopy and thermal analysis. The metal ion retention properties at different pH values were investigated by a batch method. Metal ions studied were: Cu(II), Cd(II), Zn(II), Hg(II), Pb(II), and Cr(III). The metal ion binding ability depended strongly on the pH. The retention properties were also tested under competitive conditions. Elution of the metal ion was investigated in acid medium at different concentrations. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 90: 700–705, 2003  相似文献   

15.
Copolymers (8‐HQ5‐SAOF) were synthesized by the condensation of 8‐hydroxyquinoline 5‐sulphonic acid (8‐HQ5‐SA) and oxamide (O) with formaldehyde (F) in the presence of acid catalyst. Four different copolymers were synthesized by using varied molar proportion of the reacting monomers. Copolymer resin composition has been determined on the basis of their elemental analysis and average molecular weights of these resins were determined by conductometric titration in nonaqueous medium. Viscometric measurement in dimethyl sulphoxide (DMSO) has been carried out with a view to ascertain the characteristic functions and constants. Electronic spectra, FTIR, and proton nuclear magnetic resonance spectra were studied to elucidate the structures. The newly synthesized copolymer proved to be a selective chelating ion‐exchange copolymer for certain metals. The chelating ion‐exchange properties of this synthesized copolymer was studied for different metal ions such as Fe3+, Cu2+, Ni2+, Co2+, Zn2+, Cd2+, and Pb2+. A batch equilibrium method was used in the study of the selectivity of metal ion uptake involving the measurements of the distribution of a given metal ion between the copolymer sample and a solution containing the metal ion only for representative copolymer 8‐HQ5‐SAOF‐I due to economy of space. The study was carried out over a wide pH range, shaking time, and in media of various ionic strengths. The copolymer showed a higher selectivity for Fe3+, Cu2+, and Ni2+ ions than for Co2+, Zn2+, Cd2+, and Pb2+ ions. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

16.
王帅  钟宏  王仲南  张宝元  张骞 《应用化工》2010,39(5):747-750
树脂矿浆法(RIP)从溶液中提取与分离贵金属是目前的研究热点,其关键是制备高吸附容量和高吸附选择性的螯合树脂。讨论了选择性吸附贵金属离子的螯合树脂的分类方法、树脂结构与性能的关系、树脂与贵金属离子的配位机理,按配位原子分类综述了近10年来国内外螯合树脂的合成和吸附的研究进展,并展望了螯合树脂研究的发展方向。  相似文献   

17.
无机锰吸附材料的制备及其锂离子的吸附性能   总被引:1,自引:0,他引:1       下载免费PDF全文
以氢氧化锂为原料,通过控制无机锰吸附材料合成反应条件制备了尖晶石型的LiMn2O4离子筛前驱体,经酸浸脱锂后获得对Li+具有特殊选择性吸附的尖晶石型离子筛。对无机锰吸附材料进行了XRD、SEM、BET表征,测定了离子筛对纯锂溶液和卤水中锂的吸附容量。结果表明,当离子筛制备体系的原料锂锰物质的比为0.5、800 ℃下反应15 h时,产品为近纯尖晶石型晶体,且具有较大比表面积。吸附实验表明,该离子筛在碱性含锂溶液中对Li+具有吸附性能,且吸附容量随着溶液pH和温度的升高而增大,在pH=13的纯锂溶液中最大吸附量可达32.251 mg/g,并在30 h达到吸附平衡。该吸附材料循环利用8次后,吸附量保持在18 mg/g以上,在西藏龙木错卤水中,对锂的吸附量达到11.273 mg/g。吸附过程符合伪二级动力学,表明吸附过程主要为化学吸附,且离子交换反应的控制步骤是颗粒扩散控制(PDC)。  相似文献   

18.
Two novel chelating resins are prepared by anchoring diethylenetriamine bis‐ and mono‐furaldehyde Schiff bases onto the macroporous GMA‐DVB copolymer beads and utilized for the adsorption towards Cu(II), Co(II), Ni(II), and Zn(II). FTIR spectra show that Schiff base groups have been successfully introduced into the polymer matrix and the chelating resins can form complexes with the metal ions. The chelating resins show a higher adsorption capacity toward Cu(II). The conductivity method can be used for determining the adsorption kinetics of the resins towards metal ions. The results show that the adsorption rates towards Cu(II) are much higher than those towards other ions and pseudo second‐order and intraparticle diffusion models can be applied to treat the adsorption amount‐time data. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

19.
Phenol/formaldehyde resin, commonly sulfonated, is used as ion exchanger. Lignin, which is the phenolic polymer matrix in wood, was isolated from olive stone biomass by alkaline hydrolysis of weak ether bonds (Kraft lignin, KRL). It was then hydroxymethylated (KRLH) with an aqueous solution of formaldehyde. Novolac resin (N) was synthesized from phenol and formaldehyde under acidic conditions. KRL or KRLH was incorporated into phenol/formaldehyde during polymerization (N‐KRL, N‐KRLH). The products of polymerization (N, N‐KRL and N‐KRLH) were sulfonated with concentrated H2SO4 (1:3 w/w as typical proportion according to literature or 1:6 w/w as an excess of H2SO4) and then cross‐linked with formaldehyde. The different products were characterized by IR spectroscopy, swelling in ethanol, acetone and in an aqueous solution of 1 N NaOH. The ion‐exchange capacity, the moisture retention capacity and the titration curves of the sulfonated and cured products were determined. The ion‐exchange capacity and the uptake of metal ions (mainly Co2+ and Cu2+) detected by atomic absorption spectroscopy, on the sulfonated materials, prepared in an excess of H2SO4, is higher for N‐KRL and N‐KRLH than for N and it takes place at the same rate or faster. The latter shows a medium acidic behaviour according to the titration curves, in contrast with the sulfonated N‐KRLH and N‐KRL which show a strongly acidic behaviour. © 2001 Society of Chemical Industry  相似文献   

20.
A novel chelating resin containing sulfoxide and diethylene glycol, poly{4‐vinylbenzyl‐[2‐2‐(hydroxyethyl)ethoxyl]sulfoxide} (PVESO) was synthesized using chloromethylated polystyrene (PS‐Cl) as material. Its structure was characterized by elemental analysis, infrared spectra, and scanning electron microscopy (SEM). The adsorption capacities of the resin for Hg2+, Ag+, Cu2+, Zn2+, and Pb2+ at various pH values were determined. The maximum adsorption capacities for Hg2+ and Ag+ were 1.56 and 0.75 mmol g?1 respectively. The resin had high selectivity for Hg2+ and Ag+ over the pH range 1.0–7.0. The adsorption capacities for Hg2+ and Ag+ under competitive condition were also determined by batch experiment method. In addition, the adsorption kinetics of the resin towards Hg2+ at different temperatures was also investigated. The results showed that the adsorption rate was governed by film diffusion at 20°C and 25°C, by particle diffusion at 30°C and 35°C. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102: 6054–6059, 2006  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号