首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Four‐arm star‐shaped polymers and copolymers were obtained by transition metal‐catalyzed atom‐transfer radical polymerization (ATRP). The polymers were characterized by FTIR and 1H‐NMR spectroscopy. Gel permeation chromatography results indicated the formation of polystyrene and polystyrene‐block‐poly(methyl methacrylate) (PS‐b‐PMMA) arms with controlled molecular weights. In dilute solution, the linear polymers had higher inherent viscosities than star‐shaped ones. Thermogravimetric analysis showed a similar degradation mechanism for linear and star‐shaped polymers. Differential scanning calorimetry indicated the successful formation of diblock star‐shaped copolymers. Copyright © 2006 Society of Chemical Industry  相似文献   

2.
BACKGROUND: Generation of stars around in situ formed cores provides a facile approach to star‐shaped polymers. Therefore the self‐condensing atom transfer radical copolymerization (SCATRCP) of N‐[4‐(α‐bromoisobutyryloxy)phenyl]maleimide (BiBPM) and a large excess of styrene (St) was investigated. RESULTS: BiBPM and St formed a charge transfer complex (CTC), which underwent the SCATRCP, leading to the branched core initiating the atom transfer radical polymerization of St, finally giving star‐shaped polystyrene (PS). Kinetic and structural study showed that a higher dosage of BiBPM resulted in an enhanced polymerization rate, a higher degree of branching and a larger number of short PS arms. Differential scanning calorimetry suggested that the glass transition temperature of the star‐shaped PS decreased with molecular weight. Melt rheometry showed that even a slightly branched architecture of the PS led to a significantly lower viscosity; both the melt flow index and the activation energy increased with the degree of branching. CONCLUSION: Due to the preferential consumption of BiBPM and formation of a CTC, even a very low dosage of BiBPM could lead to star‐shaped PS, which, in comparison with linear analogues, could possess much better melt fluidity. Copyright © 2008 Society of Chemical Industry  相似文献   

3.
A liquid crystal polyester and two liquid crystal copolyesters containing α‐methylstilbene moieties and aliphatic or aromatic spacers in the backbone were synthesized in good yields, with the aim of using them for photosensitive microcapsule preparation. The synthesized polymers were fully characterized with respect to thermal stability, type of mesophase, molecular weight and E–Z photoisomerization. Combination of monomers with different structures allowed adjustment of the polymer characteristics such as degree of crystallinity and glass transition temperature, as verified using X‐ray diffraction, polarized optical microscopy and differential scanning calorimetry. Quantitative 1H NMR and UV‐visible experiments were performed in order to investigate E–Z photoisomerization after photoirradiation at 364 nm. Finally, a membrane based on one of these polymers was prepared and it was found that its wettability increased on photoirradiation. © 2013 Society of Chemical Industry  相似文献   

4.
A novel star polymer with β‐cyclodextrin (β‐CD) core and polyacrylonitrile arms and its metal complexes (Cu2+, Zn2+, and Ag+) were synthesized and characterized by means of infrared spectra, ultraviolet, GPC, X‐ray photoelectron spectroscopy, differential scanning calorimetry, cyclic voltammetry, and electron spin resonance. The results indicate that the monomers of acrylonitrile were initiated by functionalized β‐CD. The thermal properties of star polymer were improved greatly after transitional metal ions were introduced into it. The novel star polymer metal complexes possess properties of metal ions, polymer, and β‐CD. Furthermore, it shows stable electrochemical activity. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007  相似文献   

5.
5,10,15,20‐tetra(4‐hydroxyphenyl)porphyrin (THPP) was synthesized by the condensation of pyrrole with 4‐hydroxybenzaldehyde in the presence of solvent (propionic acid). Subsequently, the resulting THPP was converted to a tetrafunctional star‐shaped macroinitiator (porphyrin‐Br4) by esterification of it with 2‐bromopropanoyl bromide, and then atom transfer radical polymerization (ATRP) of styrene was conducted at 110°C with CuCl/2,2′‐bipyridine as the catalyst system. The resulting product was reacted with NBS to obtain star‐shaped initiator porphyrin‐(PSt‐Br)4, which was used the following ATRP of the GMA to synthesize star–comb‐shaped grafted polymer porphyrin‐(PSt‐g‐PGMA)4. The number molecular weight was 2.3 × 104 g/mol, and the dispersity was narrow (Mw/Mn = 1.32). The structure of the polymers was investigated by NMR, UV–vis, IR, and GPC measurement. The self‐assembly behavior of the polymer porphyrin‐(PSt‐g‐PGMA)4 was studied by DLS and AFM. © 2012 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

6.
Amphiphilic heteroarm star‐shaped polymers have important theoretical and practical significance. In this work, amphiphilic heteroarm star‐shaped polymer was synthesized by the use of polyfunctional chain transfer agent via sequential free radical polymerization in two steps. First, conventional free radical polymerization of methyl methacrylate (MMA) initiated by 2,2′‐azobis (isobutyronitrile) (AIBN) was carried out in the presence of polyfunctional chain transfer agent, pentaerythritol‐tertrakis (3‐mercaptopropinate) (PETMP). At appropriate monomer conversion, about two‐arm s‐PMMA having two residual thiol groups at the chain center was obtained. Second, the s‐PMMA obtained above was used as macro‐chain‐transfer agent for free radical polymerization of acrylic acid (AA). The heteroarm star‐shaped polymer with the hydrophobic PMMA segment and the hydrophilic PAA segment was obtained. The successful synthesis of heteroarm star‐shaped polymers, (PMMA)2(AA)2, was confirmed by 1H‐NMR and its self‐assembly behavior in different solvents. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

7.
Biodegradable polyrotaxane‐based triblock copolymers were synthesized via the bulk atom transfer radical polymerization (ATRP) of n‐butyl methacrylate (BMA) initiated with polypseudo‐rotaxanes (PPRs) built from a distal 2‐bromoisobutyryl end‐capped poly(ε‐caprolactone) (Br‐PCL‐Br) with α‐cyclodextrins (α‐CDs) in the presence of Cu(I)Br/N,N,N′,N″,N″‐pentamethyldiethylenetriamine at 45 ºC. The structure was characterized in detail by means of 1H NMR, gel permeation chromatography, wide‐angle X‐ray diffraction, DSC and TGA. When the feed molar ratio of BMA to Br‐PCL‐Br was changed from 128 to 300, the degree of polymerization of PBMA blocks attached to two ends of the PPRs was in the range 382 ? 803. Although about a tenth of the added α‐CDs were still threaded onto the PCL chain after the ATRP process, the movable α‐CDs made a marked contribution to the mechanical strength enhancement, blood anticoagulation activity and protein adsorption repellency of the resulting copolymers. Meanwhile, they could also protect the copolymers from the attack of H2O and Lipase AK Amano molecules, exhibiting a lower mass loss as evidenced in hydrolytic and enzymatic degradation experiments. © 2013 Society of Chemical Industry  相似文献   

8.
Liquid crystalline diblock copolymers with different molecular weights and low polydispersities were synthesized by atom transfer radical polymerization of methyl methacrylate (MMA) and 2,5‐bis[(4‐methoxyphenyl)oxycarbonyl]styrene (MPCS) monomers. The block architecture (coil‐conformation of MMA segment and rigid‐rod of MPCS segment) of the copolymer was experimentally confirmed by a combination of 1H nuclear magnetic resonance and gel permeation chromatograph techniques. The liquid crystalline behaviour of the copolymer was studied using differential scanning calorimetry and polarized optical microscope. It was found that the liquid crystalline behaviour was dependent on the number average molecular weight of the rigid segment. Only those copolymers with Mn(GPC) of the rigid block above 9200 g mol?1 could form liquid crystalline phases higher than the glass transition temperature of the rigid block. The random copolymers MPCS‐co‐MMA were also synthesized by conventional free radical polymerization. The molar content of MPCS in MPCS‐co‐MMA had to be higher than 71% to maintain liquid crystalline behaviour. © 2003 Society of Chemical Industry  相似文献   

9.
This investigation reports the preparation of styrene–α‐olefinic random copolymers, using 1‐octene as an α‐olefin, via atom transfer radical polymerization. Atom transfer radical copolymerization of styrene with 1‐octene was successfully carried out using phenylethyl bromide as initiator and CuBr as catalyst in combination with N, N, N′, N″, N″‐pentamethyldiethylenetriamine as ligand. The copolymers had controlled molecular weight, narrow dispersity and well‐defined end groups with significant 1‐octene incorporation in the polymer. Incorporation of 1‐octene in the copolymers was confirmed using 1H NMR and matrix‐assisted laser desorption ionization time‐of‐flight mass spectroscopy. An increase in 1‐octene content in the monomer feed led to an increase in the level of incorporation of the α‐olefin in the copolymer. An increase in the concentration of 1‐octene led to a decrease in the rate of polymerization and an increase in dispersity. The glass transition temperature of the copolymer gradually decreased as the incorporation of 1‐octene increased. Copyright © 2011 Society of Chemical Industry  相似文献   

10.
A novel linear water‐soluble β‐cyclodextrin polymer has been prepared by grafting β‐cyclodextrin on poly[(methyl vinyl ether)‐alt‐(maleic anhydride)]. First, lithium hydride was used to obtain the mono‐alkoxide β‐CD. Grafting of β‐CD derivatives to the polymer backbone was then carried out by an esterification method. Using this method, polymers containing various amounts of β‐CD were synthesized. The resulting grafted polymers were characterized by two complementary methods, 1H NMR and IR spectroscopy. The first was used to calculate the degree of substitution for the low amounts of β‐CD. The second method was very useful to evaluate the degree of substitution and the molar ratio of CD especially for high amounts of grafting. Our results indicate good agreement between both methods for intermediate rates. Copyright © 2004 Society of Chemical Industry  相似文献   

11.
Well‐defined polystyrene‐b‐polyisoprene‐b‐polystyrene (SIpS) triblock copolymers with different microstructures were synthesized by living anionic polymerization. The synthesis of star‐branched polyisobutylene (PIB) was accomplished by the cationic polymerization in 2‐chloro‐2,4,4‐trimethylpentane/titanium tetrachloride/SIpS triblock copolymer/2,6‐di‐tert‐butylpyridine initiating system. The double bonds in SIpS triblock copolymer were activated as starting points for isobutylene polymerization. The formation of star‐branched architecture was demonstrated by size‐exclusion chromatography with quadruple detection: refractive index, multiangle laser light scattering, viscometric, and ultraviolet detectors. SIpS triblock copolymer with high 3,4‐PIp content is more reactive than that with high 1,4‐PIp content in cationic initiating stage. The yields of star‐branched PIB were remarkably dependent on the reaction time of TMP+ with SIpS. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

12.
Star‐shaped molecules consisting of regioregular poly(3‐hexylthiophene) (P3HT) chains as the arms, attached to either a propeller‐like triphenylamine or a planar triphenylbenzene core, have been synthesized via Suzuki coupling. The structures of the three‐arm star‐shaped poly(3‐hexylthiophene) (s‐P3HT) materials obtained were studied using Fourier transform infrared, 1H and 13C NMR, XRD, gel permeation chromatography and DSC. The s‐P3HT polymers were soluble in common organic solvents and exhibited number‐average molecular weights of 6000–7200 g mol?1. Their optical properties in solutions and in solid state films were investigated using the UV?visible absorption and photoluminescence techniques, and were compared with those of linear P3HT. © 2015 Society of Chemical Industry  相似文献   

13.
The atom‐transfer radical polymerization (ATRP) of methyl methacrylate (MMA), using α,α′‐dichloroxylene as initiator and CuCl/N,N,N′,N″,N″‐pentamethyldiethylenetriamine as catalyst was successfully carried out under microwave irradiation (MI). The polymerization of MMA under MI showed linear first‐order rate plots, a linear increase of the number‐average molecular weight with conversion, and low polydispersities, which indicated that the ATRP of MMA was controlled. Using the same experimental conditions, the apparent rate constant (k) under MI (k = 7.6 × 10?4 s?1) was higher than that under conventional heating (k = 5.3 × 10?5 s?1). © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 92: 2189–2195, 2004  相似文献   

14.
A new enantioselective α‐alkylation of α‐tert‐butoxycarbonyllactams for the construction of β‐quaternary chiral pyrrolidine and piperidine core systems is reported. α‐Alkylations of N‐methyl‐α‐tert‐butoxycarbonylbutyrolactam and N‐diphenylmethyl‐α‐tert‐butoxycarbonylvalerolactam under phase‐transfer catalytic conditions (solid potassium hydroxide, toluene, −40 °C) in the presence of (S,S)‐3,4,5‐trifluorophenyl‐3,3′,5,5′‐tetrahydro‐2,6‐bis(3,4,5‐trifluorophenyl)‐4,4′‐spirobi[4H‐dinaphth[2,1‐c:1′,2′‐e]azepinium] bromide [(S,S)‐NAS Br] (5 mol%) afforded the corresponding α‐alkyl‐α‐tert‐butoxycarbonyllactams in very high chemical (up to 99%) and optical yields (up to 98% ee). Our new catalytic systems provide attractive synthetic methods for pyrrolidine‐ and piperidine‐based alkaloids and chiral intermediates with β‐quaternary carbon centers.  相似文献   

15.
In the present study the derivatization of two water‐soluble synthetic polymers, α,β‐poly(N‐2‐hydroxyethyl)‐DL ‐aspartamide (PHEA) and α,β‐polyasparthylhydrazide (PAHy), with glycidyltrimethylammonium chloride (GTA) is described. This reaction permits the introduction of positive charges in the macromolecular chains of PHEA and PAHy in order to make easier the electrostatic interaction with DNA. Different parameters affect the reaction of derivatization, such as GTA concentration and reaction time. PHEA reacts partially and slowly with GTA; on the contrary the reaction of PAHy with GTA is more rapid and extensive. The derivatization of PHEA and PAHy with GTA is a convenient method to introduce positive groups in their chains and it permits the preparation of interpolyelectrolyte complexes with DNA. © 2000 Society of Chemical Industry  相似文献   

16.
It was shown that the catalytic hydrogenation of α‐iminophosphonates by molecular hydrogen can serve as a convenient method for the synthesis of racemic and optically active α‐aminophosphonates. Up to 94% ee was achieved in the rhodium‐catalyzed enantioselective hydrogenation using chiral ligand (R)‐BINAP.  相似文献   

17.
A practical and novel process for the decarboxylative fluorination of β‐ketoacids in water in the presence of phase transfer catalyst has been developed, affording a series of α‐fluoroketones in good to excellent yields. Furthermore, a preliminary investigation for the catalytic asymmetric transformation was performed and a proposed mechanistic pathway for this catalytic process was proposed.

  相似文献   


18.
The first example of a highly enantioselective organocatalytic aziridination of α‐substituted α,β‐unsaturated aldehydes is presented. The reaction is catalyzed by simple chiral amines and gives access to highly functional terminal azirdines containing an α‐tertiary amine stereocenter in high yields and enantiomeric ratios (95.5:4.5–98:2).  相似文献   

19.
The cyclisation of N‐allyl‐N‐substituted‐α‐polychloroamides is efficiently obtained through a copper‐catalysed activators regenerated by electron transfer–atom transfer radical cyclisation process, with a metal load of only 0.5 mol%. The redox catalyst is introduced in its inactive form as copper(II) chloride/[nitrogen ligand] complex, and continuously regenerated to the active copper(I) chloride/[nitrogen ligand] species by ascorbic acid. To preserve the catalyst integrity, the hydrochloric acid, released after each regeneration cycle, has been quenched by carbonate. The choice of the solvent is critical, the best performance being observed in ethyl acetate‐ethanol (3:1).  相似文献   

20.
Covalent functionalization of multi‐walled carbon nanotubes (MWNTs) with side‐chain azobenzene liquid crystalline poly{6‐[4‐(4‐methoxyphenylazo)phenoxy]hexyl methacrylate} (PMMAZO) was successfully achieved via atom transfer radical polymerization. The resultant samples were characterized using Fourier transform infrared spectroscopy, thermogravimetric analysis and transmission electron microscopy. The results of differential scanning calorimetry and polarized optical microscopy show that the liquid crystalline behavior of PMMAZO‐functionalized carbon nanotubes (CNT‐PMMAZO) is similar to that of the PMMAZO homopolymer. The orientation of MWNTs and CNT‐PMMAZO in a PMMAZO matrix in the presence of an electric field was investigated. The results indicate that the orientation of MWNTs is dominated by the viscosity of the matrix, but the orientation of CNT‐PMMAZO is controlled by both the viscosity and the presence of a liquid crystalline phase ascribed to the compatibility between MWNTs and PMMAZO becoming better after covalent modification. Copyright © 2010 Society of Chemical Industry  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号