首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We investigate the rheological properties of a filler-reinforced rubber compound using a rotorless shear rheometer specially designed for rubber and a rotational rheometer with parallel-plate geometry. Our aim is to evaluate the effects of wall slip on both the oscillatory and steady shear modes of the rotational rheometer. The rheological measurements show that the slip generally does not affect the oscillatory shear but does exist in the steady shear flow and tends to make the measured shear viscosity lower than the true value. Besides, we extend the investigation into engineering applications. The extrusion die for a given extrudate profile is obtained using a finite-element model in which the wall slip is considered as a boundary condition. To validate the die design, an extrusion experiment is carried out and the results confirm that, for filled elastomers, it is necessary to consider the effect of wall slip in the extrusion die design.  相似文献   

2.
In this study, we investigated the effects of untreated precipitated silica (PSi) and fly ash silica (FASi) as fillers on the properties of natural rubber (NR) and styrene–butadiene rubber (SBR) compounds. The cure characteristics and the final properties of the NR and SBR compounds were considered separately and comparatively with regard to the effect of the loading of the fillers, which ranged from 0 to 80 phr. In the NR system, the cure time and minimum and maximum torques of the NR compounds progressively increased at PSi loadings of 30–75 phr. A relatively low cure time and low viscosity of the NR compounds were achieved throughout the FASi loadings used. The vulcanizate properties of the FASi‐filled vulcanizates appeared to be very similar to those of the PSi‐filled vulcanizates at silica contents of 0–30 phr. Above these concentrations, the properties of the PSi‐filled vulcanizates improved, whereas those of the FASi‐filled compounds remained the same. In the SBR system, the changing trends of all of the properties of the filled SBR vulcanizates were very similar to those of the filled NR vulcanizates, except for the tensile and tear strengths. For a given rubber matrix and silica content, the discrepancies in the results between PSi and FASi were associated with filler–filler interactions, filler particle size, and the amount of nonrubber in the vulcanizates. With the effect of the FASi particles on the mechanical properties of the NR and SBR vulcanizates considered, we recommend fly ash particles as a filler in NR at silica concentrations of 0–30 phr but not in SBR systems, except when improvement in the tensile and tear properties is required. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 93: 2119–2130, 2004  相似文献   

3.
BACKGROUND: Tack and green strength of filled and gum (unfilled) natural rubber (NR), poly(styrene‐co‐butadiene) rubber (SBR), polybutadiene rubber (BR) and (SBR‐BR) blend with different loadings of reinforcement agent, silanized silica nanofiller (Coupsil 8113), were studied and the results compared and discussed. RESULTS: It was found that silica was fully dispersed in rubber matrix after 13 min of mixing. In addition, with some exceptions for NR and (SBR‐BR) blend, filler loading decreased the tack strength of the studied filled rubbers. Green strength and Mooney viscosity increased with filler loading for all studied filled rubbers but with different rates and amounts. The optimum filler loadings for NR and (SBR‐BR) filled blend were 30 and 10 phr, respectively. Tacks of NR filled rubbers were much higher than those of synthetic filled rubbers. CONCLUSION: It was concluded that filler loading alters substantially the tack and green strength of the rubbers under investigation. Copyright © 2009 Society of Chemical Industry  相似文献   

4.
Natural rubber (NR) and styrene‐butadiene rubber (SBR) latex gels were prepared by sulfur prevulcanization technique with varying amounts of curing agent and accelerator systems to generate gradient in crosslink density. These gels were characterized by solvent swelling, dynamic light scattering, atomic force microscopy, and mechanical properties. Crosslinked NR gels were intermixed with neat SBR matrix and vice versa. Rheological behavior of chemically crosslinked gel‐filled NR and SBR was studied by capillary rheometry. Intermixing of crosslinked gels in the rubber matrices resulted in a considerable reduction in apparent shear viscosity and die swell values. This behavior was found to be dependent on several factors like gel concentration in the matrix, crosslink density of the gels, their size, and distribution. The effect of temperature on viscosity was studied extensively following the Arrhenious‐Eyring model. A shear rate‐temperature superposition mastercurve was constructed to predict the melt viscosities of the systems as a function of temperature. The change in die swell values was related to the change in first normal stress difference. The scanning electron photomicrographs of the extrudates revealed that presence of gels markedly improved the surface roughness of the raw rubbers. POLYM. ENG. SCI., 2009. © 2009 Society of Plastics Engineers  相似文献   

5.
Complicated shape products from ceramic composite materials are nowadays intensively processed via flow molding technologies. Rheological properties of these materials are essential for the clarification of the deformation behavior through channels under various conditions. In this article, ceramic powder (zirconia) was mixed (10–50 vol%) with polypropylene, paraffin, and stearic acid in an elastic extruder. Parallel superposed steady and oscillatory shear flows were measured on a cone‐plate rheometer. Flow properties at high shear rates were evaluated on a capillary rheometer. The effects of powder content, shear rate/angular frequency, and temperature were clarified. The studied filled systems showed highly non‐Newtonian behavior and apparent yield stress; their viscoelastic properties were influenced remarkably under the superposed shear flow at low shear rate and angular frequency, and they showed significantly different behavior from unfilled and fiber‐filled systems. POLYM. COMPOS., 2009. © 2008 Society of Plastics Engineers  相似文献   

6.
The influence of sulfur‐crosslinked, quasi‐nanosized gels on the rheological and mechanical properties of raw natural rubber (NR) was investigated. Latex gels with different crosslink densities were prepared through the variation of the sulfur‐to‐accelerator ratio. These gels were characterized by dynamic light scattering, solvent swelling, and mechanical properties. The gels were mixed with raw NR latex at concentrations of 2, 4, 8, and 16 phr, and their effect on the rheological properties of NR was studied by Monsanto processability tester. The presence of gel in raw NR reduced the apparent shear viscosity and die swell considerably. Initially, the viscosity decreased up to a 8 phr gel loading and then increased with an increase in the gel loading. However, the change in the viscosity was related to the crosslink density of the gels. A new empirical equation relating the viscosity, volume fraction of the gels, and crosslink density was proposed. The die swell of gel‐filled raw NR was at least 10% lower than that of unfilled raw NR and decreased with an increase in the gel loading. The effect of the gels on the die swell properties was explained through the calculation of the principal normal stress difference of gel‐filled NR systems. Scanning electron photomicrographs of the extrudates revealed much better surface smoothness for the gel‐filled virgin rubber systems than for the unfilled rubber. The addition of the gels to raw NR increased the modulus and tensile strength, whereas the elongation at break decreased. The effect of the gels on the dynamic mechanical properties of NR was also investigated. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

7.
Nitrile rubber (NBR) compounds containing various loadings of fly ash (FA) were prepared, and their viscoelastic properties and reinforcement mechanism were investigated and compared with those of natural rubber (NR) compounds reported previously. The results obtained exhibit an increase in storage modulus (G′) with increasing FA particularly at high FA loading. By contrast, the broadness of linear viscoelastic (LVE) region is found to decrease. With the use of Guth‐Gold equation, the positive deviation of experimental values of relative modulus outward the theoretical values is observed at low strain of deformation. However, at high deformation strain, the negative deviation is found. The results imply that the presence of pseudo‐network (as formed via FA–FA and FA–NBR interactions) and the ball bearing effect provided by FA having spherical shape are responsible for the reinforcement in FA filled NBR compounds. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

8.
Blends of elastomeric chlorinated polyethylene (CPE) and natural rubber (NR) at the blend composition ratio of 80/20 CPE/NR with various precipitated silica loadings from 0 to 30 phr were prepared. Their rheological behaviors were determined using two rheometers with different shear modes, i.e., the oscillatory rheometer (Rubber Process Analyzer, RPA2000) and the rate‐controlled capillary rheometer (Goettfert Rheotester 2000). Results obtained reveal that the viscoelastic behavior of blends is influenced remarkably by loadings of silica. Within the oscillatory shear strains of 0.3–30%, the unfilled blend appears to be almost insensitive to shear strain that means the unfilled blend possesses a broad linear viscoelastic (LVE) region. As silica is incorporated, the elastic modulus (G′) of blends increases, particularly at silica loadings of 20 and 30 phr. The increase in G′ as a function of silica loading could be explained by a reinforcing effect via a hydrodynamic effect as well as a strong interaction between chlorine atoms on CPE molecules and silanol functional groups on silica surfaces associated with a formation of silica tridimensional transient network, usually known as a secondary filler network. Also, all blends with various loadings of precipitated silica reveal an increase in elasticity with increasing frequency, and those with high silica loadings (i.e., 20 and 30 phr) give a more time‐independent elastic response, which supports the presence of filler transient network in these blends. By applying the Cox and Merz concept to the rheological results, the superimposition of flow curves determined from of the oscillatory shear flow and steady shear flow in the highly silica filled blends is possible if the silica transient network effect is eliminated. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 2565–2571, 2006  相似文献   

9.
The influence of trans‐polyoctylene rubber (TOR) on the flow property, die swell behaviour and green tensile property of NR (natural rubber)/NBR (acrylonitrile–butadiene rubber) blend compound was investigated as a function of TOR loading level. The pure TOR, NR and NBR compounds were also investigated for comparison with the blend compounds. The shear viscosity of TOR strongly depended on the temperature as well as shear rate. The viscosity of the NR/NBR blend compound was even lower than that of the constituent components at relatively lower shear rates, and the viscosity difference became smaller as the shear rate was increased. The viscosity of the NR/NBR blend compounds was strongly affected by the addition of TOR but the effect became negligible with increasing the shear rate. Both the die‐swell ratio and the surface topology of extrudates were also affected by TOR addition; the dependence on shear rate was much stronger for higher TOR level. The NR/NBR blend compound showed much higher green tensile strength and elongation at break than those of the constituent components. Both the green tensile modulus and strength of the NR/NBR blend compound were greatly enhanced, while the elongation at break was reduced with the addition of TOR. © 2002 Society of Chemical Industry  相似文献   

10.
为了明确制备方法和工艺条件对橡胶沥青黏度特性的影响,在不同制备温度、制备时间、胶粉粒径及胶粉掺量条件下,采用高速剪切和机械搅拌两种方式制备橡胶沥青,对比分析了两种制备体系橡胶沥青黏度变化规律及黏度构成差异。采用Arrhenius方程计算了两种体系橡胶沥青的黏流活化能(Eη),探究了其黏流特性的差异及温度敏感性。结果表明:两种制备体系的橡胶沥青黏度随制备温度、制备时间的增加及胶粉粒径的减小先增大后减小,在135 ℃、150 ℃以及165 ℃测试条件下,剪切橡胶沥青的黏度大于搅拌体系,而在180 ℃条件下呈现出相反规律;随胶粉掺量的增加,二者的黏度不断增大,且搅拌体系的黏度始终大于剪切体系。剪切体系的Eη大于搅拌体系,表明剪切体系橡胶沥青的黏度主要源于胶粉和沥青的交互作用,温度敏感性更强,而搅拌橡胶沥青的黏度主要来自胶粉的位阻效应,自身稳定性更好。  相似文献   

11.
This research studied the composition and behavior of natural rubber (NR) and ethylene propylene diene monomer (EPDM) blends at various carbon black concentrations (0–30 phr) in terms of electrical resistivity, dielectric breakdown voltage testing, and physical properties. The blends having electrical properties suitable for application in high‐insulation iron crossarms were selected for investigation of compatibility and increased physical properties. The effect of the homogenizing agent concentration on improvement of compatibility of blends was studied by scanning electron microscopy, pulsed nuclear magnetic resonance spectroscopy, and rheology techniques. We also examined mechanical properties such as tensile strength, tear strength, elongation at break, and hardness. The NR/EPDM blends filled with a fixed concentration of silica were investigated for ozone resistance. A carbon black content as high as 10 phr is still suitable for the insulation coating material, which can withstand electrical voltage at 10 kVac. Addition of the homogenizing agent at 5 phr can improve the mechanical compatibility of blends, as evidenced by the positive deviation of shear viscosity of the rubber blend, that is, the calculated shear viscosity being higher than that of experimental data. Moreover, the pulsed NMR results indicated that the spin‐spin relaxation (T2) of all three components of the rubber blend was compressed upon the addition of the homogenizing agent. The ratio of NR/EPDM in the blend to best resist the ozone gas is 80/20 with the addition of silica of 30 phr into the blend. Also, the NR/EPDM filled with silica had a decreased change in thermal and mechanical properties of blends after thermal aging. The synergistic effect of silica content and high NR content (80) in 20 phr EPDM could improve antioxidation by ozone in the absence of a normal antioxidant for natural rubber. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 92: 3401–3416, 2004  相似文献   

12.
Novel nanoparticles, polymer‐particle coupling agents, and functionalized polymers are being developed to enhance the performance of particle‐reinforced polymer systems such as advanced rubber compounds for automobile tires. Understanding the complex rheological behavior of rubber is critical to providing insights into both processability and end‐use properties. One unique aspect of the rheology of filled elastomers is that the incorporation of particles introduces a hysteretic softening (Payne effect) at small dynamic strains. This study demonstrates that this nonlinear viscoelastic behavior needs to be considered when attempting to correlate steady shear response (Mooney viscosity) to oscillatory shear measurements from test equipment such as the Rubber Process Analyzer (RPA). While a wide array of unfilled gum elastomers show good correlation between Mooney viscosity and dynamic torque from the RPA at all of the strain amplitudes used, rubber compounds containing silica and carbon black particles only exhibit good agreement between the two measures of processability when the oscillatory strain amplitude is high enough to sufficiently break up the filler network. Other features of the filler network and its influence on nonlinear rheology are considered in this investigation, including the effects of polymer–filler interactions on filler flocculation and the use of Fourier transform rheometry to illustrate the “linear‐nonlinear dichotomy” of the Payne effect. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40818.  相似文献   

13.
Processability and viscoelastic properties of natural rubber (NR) compounds filled with different carbon black loadings and types were investigated with the use of a steady shear rheometer, namely, the Mooney viscometer, and an oscillatory rheometer, namely, the Rubber Process Analyser (RPA2000). It was found that the type and amount of carbon black strongly influence the viscoelastic properties of rubber compounds. Both the dilution effect and filler transient network are responsible for the viscoelastic properties, depending on the vulcanization state. In the case of uncured compounds, the damping factor of the uncured NR decreases with increasing black loading. This is attributed to the reduction of mobilized rubber content in the compound (or the dilution effect). However, in the case of the cured NR vulcanizates, the filler transient network is the dominant factor governing the damping factor of the vulcanizate. With increasing black loading, the damping factor of the vulcanizate clearly increases. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 97: 2197–2203, 2005  相似文献   

14.
Natural silica in fly ash (FA) particles of 30 and 60 phr were incorporated as reinforcing filler in natural rubber (NR) compounds. Improvements of cure characteristics and mechanical properties of the FA/NR composites were expected by surface treatment of the FA particles, this being carried out using various contents of bis‐(3‐triethoxysilylpropyl) tetrasulfane (Si69), as a chemical silane coupling agent, and sodium hydroxide (NaOH) solution. The results suggested that the Si69 coupling agent was a satisfactory property promoter in the FA/NR composites through C S bonding with rubber molecules and siloxane linkages with FA particles. Using NaOH solution did not improve the mechanical properties of the composites. The mechanical properties of the FA/NR composites appeared to increase at low Si69 concentrations of 2.0–4.0 wt%, but decreased at high Si69 loadings of 6.0–8.0 wt%. The decrease in mechanical properties resulted from a reduction of crosslink density and a formation of flexible polysiloxane from the self‐condensation reaction of the Si69. The presence of Si69 was observed to interfere with the sulphur crosslink formation. No synergetic effect on the properties of the rubber composites was observed when using a mixture of NaOH and Si69. This article recommends concentrations of 2.0–4.0 wt% Si69 to be introduced into the FA/NR composites to achieve the optimum properties. POLYM. COMPOS., 27:30–40, 2006. © 2005 Society of Plastics Engineers  相似文献   

15.
The large amplitude oscillatory shear (LAOS) and steady shear behavior of star-shaped SSBR/silica 60 phr (21 vol%) compounds with various filler surface areas was measured and simulated. An SBR gum and SBR compounds containing four different silicas with surface areas of 55, 135, 160, and 195 m2/g were utilized. Rheological behavior indicated clear correlation with surface area. LAOS tests showed an increase in dynamic moduli, shear stress, and higher order harmonic contributions with surface area. Elastic and viscous Lissajous figures showed significant distortion at intermediate and higher strain amplitudes. Additionally, ratios of third and fifth order stress harmonics to the first stress harmonic (I3/1 and I5/1 , respectively) showed a ''bump'' at intermediate strain amplitudes for the three highest surface area compounds. With regards to steady shear, all materials showed strong shear thinning behavior, and an increase in shear viscosity with surface area. The Cox-Merz rule was shown to be valid for the SBR gum but not for the filled compounds. However, the complex viscosity as a function of shear rate amplitude at various frequencies at high strain amplitudes and the steady shear viscosity as a function of shear rate coincided. This correlation, referred to as the Philippoff approach, has important ramifications for the rubber industry, providing quick data for predicting processing behavior. The Simhambhatla-Leonov model was successfully employed to simulate rheological behavior for the SBR gum and the lowest surface area silica compound, but the model yielded mixed results for the higher surface area silica compounds.  相似文献   

16.
DL-414铝酸酯偶联剂的性质及其在天然橡胶中的应用   总被引:3,自引:0,他引:3  
叙述了含有双键的DL - 41 4铝酸酯偶联剂的性质及其在天然橡胶中的应用。结果表明 :DL - 41 4能溶于多种有机溶剂 ,热稳定性高 ,降粘性能好 ,降粘幅度达 98%。经 1 %DL - 41 4改性的活性碳酸钙填充于天然橡胶中 ,与碳酸钙填充的相比 ,胶料焦烧时间、正硫化时间均缩短 ,硫化速度加快 ,体系的转矩减小 ,流动性能得到改善 ,硫化胶的拉伸强度、扯断伸长率等机械性能也得到提高。  相似文献   

17.
The rheological behavior in the molten state and solution of hyperbranched polyol polyesters (HBPs) obtained by one step (HBP4, HBP5), step by step (HBP4P, HBP5P), and combination of both (HBP1‐4, HBP1‐5) was studied. Under conditions of dynamic oscillatory shear, all HBPs presented a shear‐thinning behavior and under steady shear they showed a Newtonian behavior. Also, the steady shear viscosities decreased with increasing temperature. The behavior of HBPs was mainly viscous, except for the HBP4P that showed higher storage modulus and reduction of complex viscosity when increasing the angular frequency. The HBPs presented higher complex viscosity than steady shear and they did not follow the Cox‐Merz rule. The HBPs in solution presented a plateau region at shear rate lower than 40 s−1 but a shear‐thickening behavior at shear rate higher than 40 s−1. The viscosities of HBPs in solution (in the plateau region) and molten state increase in the following order: HBP5P > HBP1‐5 > HBP4P > HBP1‐4 > HBP4 > HBP5. These results are not in agreement with the values of the number average molar mass obtained by vapor pressure osmometry due to different interaction between HBPs molecules. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

18.
The steady shear viscosity and dynamic viscoelastic properties of glass beads (GB) filled polycarbonate (PC) melts were studied at varying filler diameters and concentrations. The PC/GB composites containing small amounts of GB bore lower melt viscosity and dynamic modulus than those of pure PC at studied frequencies and shear rates, showing a “ball‐bearings” effect. For highly filled systems, the viscosity and dynamic modulus were decreased further at higher frequencies and shear rates. This ball‐bearings effect was enhanced by changing the GB from larger to smaller one. The oscillatory experiments with modified shear stress showed a stress‐dependent decrease of the viscoelastic properties, and revealed an interfacial slip mechanism, combined with the polymer chains disentanglement at melt/solid interfaces. The scaling relationship between the relative viscosity and the mean interparticle gap confirmed that the interfacial slip and polymer chains disentanglement were induced by the extremely high local shear developed in the narrow gaps between the nearby rotating spheres. POLYM. ENG. SCI., 45:1119–1131, 2005. © 2005 Society of Plastics Engineers  相似文献   

19.
Blends of polypropylene (PP)/ethylene-propylene diene terpolymer (EPDM)/natural rubber (NR) with different ratio were investigated using a Haake torque rheometer. The effect of N,N-m-phenylene bismaleimide (HVA-2) addition on the flow behavior of PP/EPDM/NR blends also was studied. The torque data was collected at different rotor speeds in the range of 30–60 rpm and different processing temperatures in the range of 170–190°C. The recorded data were interpreted in terms of apparent shear rate, apparent shear stress, and apparent viscosity. The shear stress–shear strain curve shows that all blends follow the power law where the pseudoplasticity behavior of melt viscosity increases with increasing NR content as well as addition of HVA-2. The apparent viscosity of the blends was found to increase with increasing NR content in the blend. The addition of HVA-2 increases the apparent viscosity due to the formation of cross-linking in rubber phase. However, blends with HVA-2 show lower flow activation energies than do similar blends without HVA-2. Scanning electron microscopy (SEM) shows good correlation with the flow properties of the blends.  相似文献   

20.
In this study, the flow properties and die‐swell ratios (B's) of two kinds of rubber compounds (SI was a calcium carbonate filled natural rubber compound, and SII was a carbon‐black‐filled natural rubber/butadiene–styrene rubber/cis‐1,4‐butadiene rubber compound) in a short‐tube extrusion flow were measured by means of a capillary rheometer under test conditions with a temperature of 90°C and an apparent shear rate varying from 10 to 4000 s?1 to identify the effects of extrusion conditions on the rheological behavior of the materials and to estimate B. The shear flow roughly obeyed the power law, whereas B increased nonlinearly with increasing extrusion rate. Under the same shear rates, the viscosity of SII was higher than that of SI, whereas the values of B of SI were higher than those of SII. Furthermore, B of the rubber compounds was estimated by means of an extrudate swell equation published in a previous work. The results show that the predictions of B were close to the measured data from the experiments. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号