首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Surface‐initiated photoiniferter‐mediated photopolymerization (SI‐PMP) in presence of tetraethylthiuram disulfide is used to directly synthesize surface‐grafted poly(methacrylic acid)‐block‐poly(N‐isopropylacrylamide) (PMAA‐b‐PNIPAM) layers. The response of these PMAA‐b‐PNIPAM bi‐level brushes to changes in pH, temperature and ionic strength is investigated by using in‐situ multi‐angle ellipsometry to measure changes in solvated layer thickness. As expected for a block copolymer architecture, PMAA blocks swell as pH is increased, with the maximum change in the thickness occurring near pH = 5, and PNIPAM blocks exhibit lower critical solution temperature (LCST) behavior, marked by a broad transition between swollen and collapsed states. The response of the bi‐level brushes to changes in added salt at constant pH is complex, as the swelling behaviors of both the weak polyelectrolyte, PMAA, and thermoresponsive PNIPAM are affected by changes in ionic strength. This work demonstrates not only the robustness of SI‐PMP for making novel, bi‐level stimuli‐responsive brushes, but also the complex links between synthesis, structure, and response of these materials.  相似文献   

2.
The controlled tuning of the characteristic dimensions of two‐dimensional arrays of block‐copolymer reverse micelles deposited on silicon surfaces is demonstrated. The polymer used is polystyrene‐block‐poly(2‐vinylpyridine) (91 500‐b‐105 000 g mol–1). Reverse micelles of this polymer with different aggregation numbers have been obtained from different solvents. The periodicity of the micellar array can be systematically varied by changing copolymer concentration, spin‐coating speeds, and by using solvent mixtures. The profound influence of humidity on the micellar film structure and the tuning of the film topography through control of humidity are presented. Light scattering, atomic force microscopy, scanning electron microscopy, transmission electron microscopy, and X‐ray photoelectron spectroscopy were used for characterization. As possible applications, replication of micellar array topography with polydimethylsiloxane and post‐loading of the micelles to form iron oxide nanoparticle arrays are presented.  相似文献   

3.
A series of synthetic polymer bioconjugate hybrid materials consisting of poly(2‐hydroxyethyl methacrylate) (p(HEMA)) and poly(l‐ histidine) (p(His)) are synthesized by combining atom transfer radical polymerization of HEMA with ring opening polymerization of benzyl‐N‐carboxy‐L ‐histidine anhydride. The resulting biocompatible and membranolytic p(HEMA)25b‐p(His)n (n = 15, 25, 35, and 45) polymers are investigated for their use as pH‐sensitive drug‐carrier for tumor targeting. Doxorubicin (Dox) is encapsulated in nanosized micelles fabricated by a self‐assembly process and delivered under different pH conditions. Micelle size is characterized by dynamic light scattering (DLS) and transmission electron microscopy (TEM) observations. Dox release is investigated according to pH, demonstrating the release is sensitive to pH. Antitumor activity of the released Dox is assessed using the HCT 116 human colon carcinoma cell line. Dox released from the p(HEMA)‐b‐p(His) micelles remains biologically active and has the dose‐dependent capability to kill cancer cells at acidic pH. The p(HEMA)‐b‐p(His) hybrid materials are capable of self‐assembling into nanomicelles and effectively encapsulating the chemotherapeutic agent Dox, which allows them to serve as suitable carriers of drug molecules for tumor targeting.  相似文献   

4.
Asymmetric membranes are prepared via the non‐solvent‐induced phase separation (NIPS) process from a polystyrene‐block‐poly(N,N‐dimethylaminoethyl methacrylate) (PS‐b‐PDMAEMA) block copolymer. The polymer is prepared via sequential living anionic polymerization. Membrane surface and volume structures are characterized by scanning electron microscopy. Due to their asymmetric character, resulting in a thin separation layer with pores below 100 nm on top and a macroporous volume structure, the membranes are self‐supporting. Furthermore, they exhibit a defect‐free surface over several 100 µm2. Polystyrene serves as the membrane matrix, whereas the pH‐ and temperature‐sensitive minority block, PDMAEMA, renders the material double stimuli‐responsive. Therefore, in terms of water flux, the membranes are able to react on two independently applicable stimuli, pH and temperature. Compared to the conditions where the lowest water flux is obtained, low temperature and pH, activation of both triggers results in a seven‐fold permeability increase. The pore size distribution and the separation properties of the obtained membranes were tested through the pH‐dependent filtration of silica particles with sizes of 12–100 nm.  相似文献   

5.
Clinical application of injectable, thermoresponsive hydrogels is hindered by lack of degradability and controlled drug release. To overcome these challenges, a family of thermoresponsive, ABC triblock polymer‐based hydrogels has been engineered to degrade and release drug cargo through either oxidative or hydrolytic/enzymatic mechanisms dictated by the “A” block composition. Three ABC triblock copolymers are synthesized with varying “A” blocks, including oxidation‐sensitive poly(propylene sulfide), slow hydrolytically/enzymatically degradable poly(ε‐caprolactone), and fast hydrolytically/enzymatically degradable poly(d ,l ‐lactide‐co‐glycolide), forming the respective formulations PPS135b‐PDMA152b‐PNIPAAM225 (PDN), PCL85b‐PDMA150b‐PNIPAAM150 (CDN), and PLGA60b‐PDMA148b‐PNIPAAM152 (LGDN). For all three polymers, hydrophilic poly(N,N‐dimethylacrylamide) and thermally responsive poly(N‐isopropylacrylamide) comprise the “B” and “C” blocks, respectively. These copolymers form micelles in aqueous solutions at ambient temperature that can be preloaded with small molecule drugs. These solutions quickly transition into hydrogels upon heating to 37 °C, forming a supra‐assembly of physically crosslinked, drug‐loaded micelles. PDN hydrogels are selectively degraded under oxidative conditions while CDN and LGDN hydrogels are inert to oxidation but show differential rates of hydrolytic/enzymatic decomposition. All three hydrogels are cytocompatible in vitro and in vivo, and drug‐loaded hydrogels demonstrate differential release kinetics in vivo corresponding with their specific degradation mechanism. These collective data highlight the potential cell and drug delivery use of this tunable class of ABC triblock polymer thermogels.  相似文献   

6.
Novel donor–acceptor rod–coil diblock copolymers of regioregular poly(3‐hexylthiophene) ( P3HT )‐block‐poly(2‐phenyl‐5‐(4‐vinylphenyl)‐1,3,4‐oxadiaz‐ole) ( POXD ) are successfully synthesized by the combination of a modified Grignard metathesis reaction ( GRIM ) and atom transfer radical polymerization ( ATRP ). The effects of the block ratios of the P3HT donor and POXD pendant acceptor blocks on the morphology, field effect transistor mobility, and memory device characteristics are explored. The TEM, SAXS, WAXS, and AFM results suggest that the coil block fraction significantly affects the chain packing of the P3HT block and depresses its crystallinity. The optical absorption spectra indicate that the intramolecular charge transfer between the main chain P3HT donor and the side chain POXD acceptor is relatively weak and the level of order of P3HT chains is reduced by the incorporation of the POXD acceptor. The field effect transistor (FET) hole mobility of the system exhibits a similar trend on the optical properties, which are also decreased with the reduced ordered P3HT crystallinity. The low‐lying highest occupied molecular orbital (HOMO) energy level (–6.08 eV) of POXD is employed as charge trap for the electrical switching memory devices. P3HT‐ b ‐POXD exhibits a non‐volatile bistable memory or insulator behavior depending on the P3HT / POXD block ratio and the resulting morphology. The ITO/ P3HT44b‐ POXD18 /Al memory device shows a non‐volatile switching characteristic with negative differential resistance (NDR) effect due to the charge trapped POXD block. These experimental results provide the new strategies for the design of donor‐acceptor rod‐coil block copolymers for controlling morphology and physical properties as well as advanced memory device applications.  相似文献   

7.
The diblock copolymers, poly(isoprene‐block‐ferrocenyldimethylsilane) (PI‐b‐PFDMS) and poly(ferrocenyldimethylsilane‐block‐dimethylsiloxane) (PFDMS‐b‐PDMS), form cylindrical micelles with an organometallic polyferrocenylsilane core in a solvent of hexanes. These cylindrical micelles were deposited onto a Si substrate from solution by either spin or dip coating, and upon reactive ion etching, continuous ceramic nanolines with lengths of micrometers and widths as small as 8 nm were created. The nanolines were characterized by scanning force microscopy (SFM) and transmission electron microscopy (TEM), and were shown to contain Fe, Si, and O from X‐ray photoelectron spectroscopy (XPS) studies. The widths of the nanolines could be varied from ca. 8 to 30 nm, depending on the composition of the corona (PI or PDMS). The oriented deposition of these cylindrical micelles can be achieved along pre‐patterned grooves on a resist film using capillary forces. Following treatment with hydrogen or oxygen plasma, oriented ceramic nanolines can be fabricated. The approach reported here represents a relatively simple method to create ceramic nanolines with large aspect ratio on semiconducting substrates.  相似文献   

8.
Conjugated rod‐coil block copolymers provide an interesting route towards enhancing the properties of the conjugated block due to self‐assembly and the interplay of rod‐rod and rod‐coil interactions. Here, we demonstrate the ability of an attached semi‐fluorinated block to significantly improve upon the charge carrier properties of regioregular poly(3‐hexyl thiophene) (rr‐P3HT) materials on bare SiO2. The thin film hole mobilities on bare SiO2 dielectric surfaces of poly (3‐hexyl thiophene)‐block‐polyfluoromethacrylates (P3HT‐b‐PFMAs) can approach up to 0.12 cm2 V?1 s?1 with only 33 wt% of the P3HT block incorporated in the copolymer, as compared to rr‐P3HT alone which typically has mobilities averaging 0.03 cm2 V?1 s?1. To our knowledge, this is the highest mobility reported in literature for block copolymers containing a P3HT. More importantly, these high hole mobilities are achieved without multistep OTS treatments, argon protection, or post‐annealing conditions. Grazing incidence wide‐angle x‐ray scattering (GIWAX) data revealed that in the P3HT‐b‐PFMA copolymers, the P3HT rod block self‐assembles into highly ordered lamellar structures, similar to that of the rr‐P3HT homopolymer. Grazing incidence small‐angle x‐ray scattering (GISAXS) data revealed that lamellar structures are only observed in perpendicular direction with short PFMA blocks, while lamellae in both perpendicular and parallel directions are observed in polymers with longer PFMA blocks. AFM, GIWAXS, and contact angle measurements also indicate that PFMA block assembles at the polymer thin film surface and forms an encapsulation layer. The high charge carrier mobilities and the hydrophobic surface of the block copolymer films clearly demonstrates the influence of the coil block segment on device performance by balancing the crystallization and microphase separation in the bulk morphological structure.  相似文献   

9.
This study involves the collective electron transport behavior of sequestered Au nanoparticles in a nanostructured polystyrene‐block‐poly(4‐vinylpyridine). The monolayer thin films (ca. 30 nm) consisting of Au nanoparticles self‐assembled in the 30‐nm spherical poly(4‐vinylpyridine) domains of an polystyrene‐block‐poly(4‐vinylpyridine) diblock copolymer were prepared. From the current‐voltage characteristics of these thin films, the collective electron transport behavior of Au nanoparticles sequestered in the spherical poly(4‐vinylpyridine) nanodomains was found to be dictated by Coulomb blockade and was quasi one‐dimensional, as opposed to the three‐dimensional behavior displayed by Au nanoparticles that had been dispersed randomly in homo‐poly(4‐vinylpyridine). The threshold voltage of these composite increased linearly upon increasing the inter‐nanoparticle distance. The electron tunneling rate constant in the case of Au nanoparticles confined in poly(4‐vinylpyridine) nanodomains is eight times larger than that in the randomly distributed case and it increases upon increasing the amount of Au nanoparticles. This phenomenon indicates that manipulating the spatial arrangement of metal nanoparticles by diblock copolymer can potentially create electronic devices with higher performance.  相似文献   

10.
Block copolymers of poly(pentafluorostyrene) (PFS) and poly(methyl methacrylate) (PMMA) (PFS‐b‐PMMA) have been synthesized using atom transfer radical polymerization (ATRP). Then, nanoporous fluoropolymer films have been prepared via selective UV decomposition of the PMMA blocks in the PFS‐b‐PMMA copolymer films. The chemical composition and structure of the PFS homopolymers and copolymers have been characterized using nuclear magnetic resonance (NMR) spectroscopy, thermogravimetric analysis (TGA), X‐ray photoelectron spectroscopy (XPS), time‐of‐flight secondary‐ion mass spectrometry (ToF‐SIMS), and molecular‐weight measurements. The cross‐sectional and surface morphologies of the PFS‐b‐PMMA copolymer films before and after selective UV decomposition of the PMMA blocks have been studied using field‐emission scanning electron microscopy (FESEM). The nanoporous fluoropolymer films with pore sizes in the range 30–50 nm and porosity in the range 15–40 % have been obtained from the PFS‐b‐PMMA copolymers of different PMMA content. Dielectric constants approaching 1.8 have been achieved in the nanoporous fluoropolymer films which contain almost completely decomposed PMMA blocks.  相似文献   

11.
An amphiphilic block copolymer, poly(methylacrylate)82block‐poly(N‐(acryloyloxy)succinimide0.29co‐(N‐acryloylmorpholine)0.71)155 (PMA82b‐P(NAS0.29co‐NAM0.71)155), was synthesized by reversible addition‐fragmentation chain transfer (RAFT) polymerization and then was supramolecularly assembled into micelles in aqueous solution, followed by chemical crosslinking throughout the shell region upon the introduction of 2,2′‐(ethylenedioxy)‐bis(ethylamine) as a crosslinker to afford well‐defined shell crosslinked nanoparticles (SCKs). The number‐averaged hydrodynamic diameters of the micelles and SCKs were (17 ± 4) nm and (16 ± 3) nm, respectively, by dynamic light scattering (DLS), and (15 ± 2) nm and (13 ± 2) nm, respectively, by transmission electron microscopy (TEM). In an attempt to narrow the particle size distributions, the dodecyl trithiocarbonate chain end of the block copolymer was replaced by a 2‐cyanoisopropyl moiety. Each nanoparticle system was characterized by DLS, electrophoretic light scattering (ELS), TEM, and small‐angle X‐ray scattering (SAXS). SAXS was of particular importance, as it provided definitive observation and quantification of shell contraction and densification upon shell crosslinking. The direct incorporation of NAS into the block copolymers during their preparation allowed for unique crosslinking chemistry to proceed with added diamino crosslinkers. The primary advantages of this system include the ability to conduct in situ synthesis of SCKs that are crosslinked directly and derivatized easily by adding nucleophilic ligands before, during, or after the crosslinking.  相似文献   

12.
Field‐effect transistor memories usually require one additional charge storage layer between the gate contact and organic semiconductor channel. To avoid such complication, new donor–acceptor rod–coil diblock copolymers (P3HT44b‐Pison) of poly(3‐hexylthiophene) (P3HT)‐block‐poly(pendent isoindigo) (Piso) are designed, which exhibit high performance transistor memory characteristics without additional charge storage layer. The P3HT and Piso blocks are acted as the charge transporting and storage elements, respectively. The prepared P3HT44b‐Pison can be self‐assembled into fibrillar‐like nanostructures after the thermal annealing process, confirmed by atomic force microscopy and grazing‐incidence X‐ray diffraction. The lowest‐unoccupied molecular orbital levels of the studied polymers are significantly lowered as the block length of Piso increases, leading to a stronger electron affinity as well as charge storage capability. The field‐effect transistors (FETs) fabricated from P3HT44b‐Pison possess p‐type mobilities up to 4.56 × 10?2 cm2 V?1 s?1, similar to that of the regioregular P3HT. More interestingly, the FET memory devices fabricated from P3HT44b‐Pison exhibit a memory window ranging from 26 to 79 V by manipulating the block length of Piso, and showed stable long‐term data endurance. The results suggest that the FET characteristics and data storage capability can be effectively tuned simultaneously through donor/acceptor ratio and thin film morphology in the block copolymer system.  相似文献   

13.
A versatile nanoparticle system is presented in which drug release is triggered by enzymatic polymer cleavage, resulting in a physicochemical change of the carrier. The polylactide‐block‐peptide‐block‐polylactide triblock copolymer is generated by initiation of the ring‐opening polymerization of L‐lactide with a complex bifunctional peptide having an enzymatic recognition and cleavage site (Pro‐Leu‐Gly‐Leu‐Ala‐Gly). This triblock copolymer is specifically bisected by matrix metalloproteinase‐2 (MMP‐2), an enzyme overexpressed in tumor tissues. Triblock copolymer nanoparticles formed by nonaqueous emulsion polymerization are readily transferred into aqueous media without aggregation, even in the presence of blood serum. Cleavage of the triblock copolymer leads to a significant decrease of the glass transition temperature (Tg) from 39 °C to 31 °C, likely mediating cargo release under physiological conditions. Selective drug targeting is demonstrated by hampered mitosis and increased cell death resulting from drug release via MMP‐2 specific cleavage of triblock copolymer carrier. On the contrary, nanocarriers having a scrambled (non‐recognizable) peptide sequence do not cause enhanced cytotoxicity, demonstrating the enzyme‐specific cleavage and subsequent drug release. The unique physicochemical properties, cleavage‐dependent cargo release, and tunability of carrier bioactivity by simple peptide exchange highlight the potential of this polymer‐nanoparticle concept as platform for custom‐designed carrier systems.  相似文献   

14.
In this study, novel pH‐responsive polyion complex micelles (PICMs) were developed for the efficient delivery of nucleic acid drugs, such as antisense oligonucleotide (AON) and short interfering RNA (siRNA). The PICMs consisted of a poly(amidoamine) (PAMAM) dendrimer–nucleic acid core and a detachable poly(ethylene glycol)‐block‐poly( propyl methacrylate‐co‐methacrylic acid) (PEG‐b‐P(PrMA‐co‐MAA)) shell. The micelles displayed a mean hydrodynamic diameter ranging from 50 to 70 nm, a narrow size distribution, and a nearly neutral surface charge. They could be lyophilized without any additives and stored in dried form. Upon redispersion in water, no change in complexation efficiency or colloidal properties was observed. Entry of the micelles into cancers cells was mediated by a monoclonal antibody fragment positioned at the extremity of the PEG segment via a disulfide linkage. Upon cellular uptake and protonation of the MAA units in the acidic endosomal environment, the micelles lost their corona, thereby exposing their positively charged endosomolytic PAMAM/nucleic acid core. When these pH‐responsive targeted PICMs were loaded with AON or siRNAs that targeted the oncoprotein Bcl‐2, they exhibited a greater transfection activity than nontargeted PICMs or commercial PAMAM dendrimers. Moreover, their nonspecific cytotoxicity was lower than that of PAMAM. The pH‐responsive PICMs reported here appear as promising carriers for the delivery of nucleic acids.  相似文献   

15.
The application of well‐defined poly(furfuryl glycidyl ether) (PFGE) homopolymers and poly(ethylene oxide)‐b‐poly(furfuryl glycidyl ether) (PEO‐b‐PFGE) block copolymers synthesized by living anionic polymerization as self‐healing materials is demonstrated. This is achieved by thermo‐reversible network formation via (retro) Diels‐Alder chemistry between the furan groups in the side‐chain of the PFGE segments and a bifunctional maleimide crosslinker within drop‐cast polymer films. The process is studied in detail by differential scanning calorimetry (DSC), depth‐sensing indentation, and profilometry. It is shown that such materials are capable of healing complex scratch patterns, also multiple times. Furthermore, microphase separation within PEO‐b‐PFGE block copolymer films is indicated by small angle X‐ray scattering (lamellar morphology with a domain spacing of approximately 19 nm), differential scanning calorimetry, and contact angle measurements.  相似文献   

16.
The preparation and characterization of new, tailor‐made polymeric membranes using poly(styrene‐b‐butadiene‐b‐styrene) (SBS) triblock copolymers for gas separation are reported. Structural differences in the copolymer membranes, obtained by manipulation of the self‐assembly of the block copolymers in solution, are characterized using atomic force microscopy, transmission electron microscopy, and the transport properties of three gases (CO2, N2, and CH4). The CH4/N2 ideal selectivity of 7.2, the highest value ever reported for block copolymers, with CH4 permeability of 41 Barrer, is obtained with a membrane containing the higher amount of polybutadiene (79 wt%) and characterized by a hexagonal array of columnar polystyrene cylinders normal to the membrane surface. Membranes with such a high separation factor are able to ease the exploitation of natural gas with high N2 content. The CO2/N2 ideal selectivity of 50, coupled with a CO2 permeability of 289 Barrer, makes SBS a good candidate for the preparation of membranes for the post‐combustion capture of carbon dioxide.  相似文献   

17.
Cinnamaldehyde, a major active compound of cinnamon, is known to induce apoptotic cell death in numerous human cancer cells. Here, dual acid‐responsive polymeric micelle‐forming cinnamaldehyde prodrugs, poly[(3‐phenylprop‐2‐ene‐1,1‐diyl)bis(oxy)bis(ethane‐2,1‐diyl)diacrylate]‐co‐4,4’(trimethylene dipiperidine)‐co‐poly(ethylene glycol), termed PCAE copolymers, are reported. PCAE is designed to incorporate cinnamaldehyde via acid‐cleavable acetal linkages in its pH‐sensitive hydrophobic backbone and self assemble to form stable micelles which can encapsulate camptothecin (CPT). PCAE self assembles to form micelles which release CPT and cinnamaldehyde in pH‐dependent manners. PCAE micelles induce apoptotic cell death through the generation of intracellular reactive oxygen species (ROS) and exert synergistic anticancer effects with a payload of CPT in vitro and in vivo model of SW620 human colon tumor‐bearing mice. It is anticipated that dual acid‐sensitive micelle‐forming PCAE with intrinsic anticancer activities has enormous potential as novel anticancer therapeutics.  相似文献   

18.
Double stimuli‐responsive membranes are prepared by modification of pH‐sensitive integral asymmetric polystyrene‐b‐poly(4‐vinylpyridine) (PS‐b‐P4VP) diblock copolymer membranes with temperature‐responsive poly(N‐isopropylacrylamide) (pNIPAM) by a surface linking reaction. PS‐b‐P4VP membranes are first functionalized with a mild mussel‐inspired polydopamine coating and then reacted via Michael addition with an amine‐terminated pNIPAM‐NH2 under slightly basic conditions. The membranes are thoroughly characterized by nuclear magnetic resonance (1H‐NMR), Fourier transform infrared spectroscopy and X‐ray‐induced photoelectron spectroscopy. Additionally dynamic contact angle measurements are performed comparing the sinking rate of water droplets at different temperatures. The pH‐ and thermo‐double sensitivities of the modified membranes are proven by determining the water flux under different temperature and pH conditions.  相似文献   

19.
Here, reactive imprint lithography (RIL) is introduced as a new, one‐step lithographic tool for the fabrication of large‐area topographically patterned, chemically activated polymer platforms. Films of polystyrene‐block‐poly(tert‐butyl acrylate) (PS‐b‐PtBA) are imprinted with PDMS master stamps at temperatures above the corresponding glass transition and chemical deprotection temperatures to yield structured films with exposed carboxylic acid and anhydride groups. Faithful pattern transfer is confirmed by AFM analyses. Transmission‐mode FTIR spectra shows a conversion of over 95% of the tert‐butyl ester groups after RIL at 230 °C for 5 minutes and a significantly reduced conversion to anhydride compared to thermolysis of neat films with free surfaces in air or nitrogen. An enrichment of the surface layer in PS is detected by angle‐resolved X‐ray photoelectron spectroscopy (XPS). In order to demonstrate application potentials of the activated platforms, a 7 nm ± 1 nm thick NH2‐terminated PEG layer (grafting density of 0.9 chains nm?2) is covalently grafted to RIL‐activated substrates. This layer reduces the non‐specific adsorption (NSA) of bovine serum albumin by 95% to a residual mass coverage of 9.1 ± 2.9 ng cm?2. As shown by these examples, RIL comprises an attractive complementary approach to produce bio‐reactive polymer surfaces with topographic patterns in a one‐step process.  相似文献   

20.
A strategy to create blood‐inert surfaces in human whole blood via ion‐pair anchoring of zwitterionic copolymer brushesand a systematic study of how well‐defined chain lengths and well‐controlled surface packing densities of zwitterionic polymers affect blood compatibility are reported. Well‐defined diblock copolymers, poly(11‐mercaptoundecyl sulfonic acid)‐block‐poly(sulfobetaine methacrylate) (PSA‐b‐PSBMA) with varying zwitterionic PSBMA or negatively charged PSA lengths, are synthesized via atom‐transfer radical polymerization (ATRP). PSA‐b‐PSBMA is grafted onto a surface covered with polycation brushes as a mimic polar/hydrophilic biomaterial surface via ion‐pair anchoring at a range of copolymer concentrations. Protein adsorption from single‐protein solutions, 100% blood serum, and 100% blood plasma onto the surfaces covered with PSA‐b‐PSBMA brushes is evaluated using a surface plasmon resonance sensor. Copolymer brushes containing a high amount of zwitterionic SBMA units are further challenged with human whole blood. Low protein‐fouling surfaces with >90% reduction with respect to uncoated surfaces are achieved with longer PSA blocks and higher concentrations of PSA‐b‐PSBMA copolymers using the ion‐pair anchoring approach. This work provides a platform to achieve the control of various surface parameters and a practical method to create blood‐inert surfaces in whole blood by grafting ionic‐zwitterionic copolymers to charged biomaterials via charge pairing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号