首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
In response to the call for a physiologically‐friendly light at night that shows low color temperature, a candle light‐style organic light emitting diode (OLED) is developed with a color temperature as low as 1900 K, a color rendering index (CRI) as high as 93, and an efficacy at least two times that of incandescent bulbs. In addition, the device has a 80% resemblance in luminance spectrum to that of a candle. Most importantly, the sensationally warm candle light‐style emission is driven by electricity in lieu of the energy‐wasting and greenhouse gas emitting hydrocarbon‐burning candles invented 5000 years ago. This candle light‐style OLED may serve as a safe measure for illumination at night. Moreover, it has a high color rendering index with a decent efficiency.  相似文献   

2.
The study reports the development of a solution‐processed phosphorescent tandem organic light‐emitting device (OLED) exhibiting extremely small efficiency roll‐off. The OLED comprises two light‐emitting units (LEUs) connected by an interconnecting unit and employs a thermally activated delayed fluorescence host material. One of the most difficult tasks in the fabrication of OLEDs is to form a multilayer structure without dissolving the underlayer during the coating of the upper layer. The developed host materials exhibit high tolerance to methanol. The upper‐layer adjacent to the light‐emitting layer consists of ZnO nanoparticles, which could be dispersed in methanol by improving the preparation method. This results in the successful fabrication of a solution‐processed phosphorescent tandem OLED comprising two LEUs. The maximum external quantum efficiency (EQE) of the tandem device is 22.8%, and the EQE is 21.9% even at a high luminance of 10 000 cd m?2. The suppression of efficiency roll‐off is among the best of those previously reported. Moreover, the operational stability of the tandem device is much higher compared with single‐LEU devices.  相似文献   

3.
Colloidal quantum‐dot light‐emitting diodes (QDLEDs) with the HfO2/SiO2‐distributed Bragg reflector (DBR) structure are fabricated using a pulsed spray coating method. Pixelated RGB arrays, 2‐in. wafer‐scale white light emission, and an integrated small footprint white light device are demonstrated. The experimental results show that the intensity of red, green, and blue (RGB) emission exhibited considerable enhancement because of the high reflectivity in the UV region by the DBR structure, which subsequently increases the use in the UV optical pumping of RGB QDs. A pulsed spray coating method is crucial in providing uniform RGB layers, and the polydimethylsiloxane (PDMS) film is used as the interface layer between each RGB color to avoid cross‐contamination and self‐assembly of QDs. Furthermore, the chromaticity coordinates of QDLEDs with the DBR structure remain constant under various pumping powers in the large area sample, whereas a larger shift toward high color temperatures is observed in the integrated device. The resulting color gamut of the proposed QDLEDs covers an area 1.2 times larger than that of the NTSC standard, which is favorable for the next generation of high‐quality display technology.  相似文献   

4.
In organic light‐emitting transistors, the structural properties such as the in‐plane geometry and the lateral charge injection are the key elements that enable the monolithic integration of multiple electronic, optoelectronic, and photonic functions within the same device. Here, the realization of highly integrated multifunctional optoelectronic organic device is reported by introducing a high‐capacitance photonic crystal as a gate dielectric into a transparent single‐layer ambipolar organic light‐emitting transistor (OLET). By engineering the photonic crystal multistack and bandgap, it is showed that the integration of the photonic structure has a twofold effect on the optoelectronic performance of the device, i.e., i) to modulate the spectral profile and outcoupling of the emitted light and ii) to enhance the transistor source–drain current by a 25‐fold factor. Consequently, the photonic‐crystal‐integrated OLET shows an order of magnitude higher emitted power and brightness with respect to the corresponding polymer‐dielectric device, while presenting as‐designed electroluminescence spectral and spatial distribution. The results validate the efficacy of the proposed approach that is expected to unravel the technological potential for the realization of highly integrated optoelectronic smart systems based on organic light‐emitting transistors.  相似文献   

5.
Novel fluorene‐based blue‐light‐emitting copolymers with an ultraviolet‐blue‐light (UV‐blue‐light) emitting host and a blue‐light emitting component, 4‐N,N‐diphenylaminostilbene (DPS) have been designed and synthesized by using the palladium‐ catalyzed Suzuki coupling reaction. It was found that both copolymers poly [2,7‐(9,9‐dioctylfluorene)‐alt‐1,3‐(5‐carbazolphenylene)] (PFCz) DPS1 and PFCz‐DPS1‐OXD show pure blue‐light emission even with only 1 % DPS units because of the efficient energy transfer from the UV‐blue‐light emitting PFCz segments to the blue‐light‐emitting DPS units. Moreover, because of the efficient energy transfer/charge trapping in these copolymers, PFCz‐DPS1 and PFCz‐DPS1‐OXD show excellent device performance with a very stable pure blue‐light emission. By using a neutral surfactant poly[9,9‐bis(6'‐(diethanolamino)hexyl)‐fluorene] (PFN‐OH) as the electron injection layer, the device based on PFCz‐DPS1‐OXD5 with the configuration of ITO/PEDOT:PSS/PVK/polymer/PFN‐OH/Al showed a maximum quantum efficiency of 2.83 % and a maximum luminous efficiency of 2.50 cd A–1. Its CIE 1931 chromaticity coordinates of (0.156, 0.080) match very well with the NTSC standard blue pixel coordinates of (0.14, 0.08). These results indicate that this kind of dopant/host copolymer could be a promising candidate for blue‐light‐emitting polymers with high efficiency, good color purity, and excellent color stability.  相似文献   

6.
Solution processing of polymer semiconductors provides a new paradigm for large‐area electronics manufacturing on flexible substrates, but it also severely restricts the realization of interesting advanced device architectures, such as lateral heterostructures with defined interfaces, which are easily accessible with inorganic materials using photolithography. This is because polymer semiconductors degrade, swell, or dissolve during conventional photoresist processing. Here a versatile, high‐resolution photolithographic method is demonstrated for patterning of polymer semiconductors and exemplify this with high‐performance p‐type and n‐type field‐effect transistors (FETs) in both bottom‐ and top‐gate architectures, as well as ambipolar light‐emitting field‐effect transistors (LEFETs), in which the recombination zone can be pinned at a photolithographically defined lateral heterojunction between two semiconducting polymers. The technique therefore enables the realization of a broad range of novel device architectures while retaining optimum materials performance.  相似文献   

7.
Electroluminescent devices become warm during operation, and their performance can, therefore, be severely limited at high drive current density. Herein, the effects of this self‐heating on the operation of a light‐emitting electrochemical cell (LEC) are systematically studied. A drive current density of 50 mA cm?2 can result in a local device temperature for a free‐standing LEC that exceeds 50 °C within a short period of operation, which in turn induces premature device degradation as manifested in the rapidly decreasing luminance and increasing voltage. Furthermore, this undesired self‐heating for a free‐standing thin‐film LEC can be suppressed by the employment of a device architecture featuring high thermal conductance and a small emission‐area fill factor, since the corresponding improved heat conduction to the nonemissive regions facilitates more efficient heat transfer to the ambient surroundings. In addition, the reported differences in performance between small‐area and large‐area LECs as well as between flexible‐plastic and rigid‐glass LECs are rationalized, culminating in insights that can be useful for the rational design of LEC devices with suppressed self‐heating and high performance.  相似文献   

8.
To achieve high‐performance large‐area flexible polymer solar cells (PSCs), one of the challenges is to develop new interface materials that possess a thermal‐annealing‐free process and thickness‐insensitive photovoltaic properties. Here, an n‐type self‐doping fullerene electrolyte, named PCBB‐3N‐3I, is developed as electron transporting layer (ETL) for the application in PSCs. PCBB‐3N‐3I ETL can be processed at room temperature, and shows excellent orthogonal solvent processability, substantially improved conductivity, and appropriate energy levels. PCBB‐3N‐3I ETL also functions as light‐harvesting acceptor in a bilayer solar cell, contributing to the overall device performance. As a result, the PCBB‐3N‐3I ETL‐based inverted PSCs with a PTB7‐Th:PC71BM photoactive layer demonstrate an enhanced power conversion efficiency (PCE) of 10.62% for rigid and 10.04% for flexible devices. Moreover, the device avoids a thermal annealing process and the photovoltaic properties are insensitive to the thickness of PCBB‐3N‐3I ETL, yielding a PCE of 9.32% for the device with thick PCBB‐3N‐3I ETL (61 nm). To the best of one's knowledge, the above performance yields the highest efficiencies for the flexible PSCs and thick ETL‐based PSCs reported so far. Importantly, the flexible PSCs with PCBB‐3N‐3I ETL also show robust bending durability that could pave the way for the future development of high‐performance flexible solar cells.  相似文献   

9.
Recently, a printable power source that can be implemented on demand in integrated circuitries has gained tremendous attention to facilitate next‐generation, form‐factor free, miniaturized electronic systems. Among various energy storage units, a solid‐state micro‐supercapacitor with in‐plane device architecture has been recognized as a viable candidate with characteristic advantages of long cycle life‐time, high frequency response, and fast charge/discharge rate. However, to date, high performance, all‐printed micro‐supercapacitors have rarely been reported owing to an absence of printable current collector materials that can sustain high voltage conditions. In this study, a multidimensional printable particle mixture comprising Ni nanoparticles, Ni flakes, and a photoreactive polymer, polyvinylpyrrolidone is proposed. The highly conductive, printed metallic current collector is generated with a conductive surface passivation layer in a timescale of 10?3 s by flash‐light sintering process. It is revealed that the resulting metallic current collector is stable at a voltage as high as 3 V in the carbon electrode‐based device, enabling the fabrication of an all‐printed solid‐state micro‐supercapacitor with an areal energy density of 79–23 mJ cm?2 at an areal power density of 0.4–12.8 mW cm?2. Arbitrarily designed device circuits can be generated on demand simply by using a digitally programmable printing process, without incorporation of additional interconnection lines.  相似文献   

10.
Considerable efforts have been devoted to the development of highly efficient blue light‐emitting materials. However, deep‐blue fluorescence materials that can satisfy the Commission Internationale de l'Eclairage (CIE) coordinates of (0.14, 0.08) of the National Television System Committee (NTSC) standard blue and, moreover, possess a high external quantum efficiency (EQE) over 5%, remain scarce. Here, the unusual luminescence properties of triphenylamine‐bearing 2‐(2′‐hydroxyphenyl)oxazoles ( 3a–3c ) and their applications in organic light‐emitting diodes (OLEDs) are reported as highly efficient deep‐blue emitters. The 3a ‐based device exhibits a high spectral stability and an excellent color purity with a narrow full‐width at half‐maximum of 53 nm and the CIE coordinates of (0.15, 0.08), which is very close to the NTSC standard blue. The exciton utilization of the device closes to 100%, exceeding the theoretical limit of 25% in conventional fluorescent OLEDs. Experimental data and theoretical calculations demonstrate that 3a possesses a highly hybridized local and charge‐transfer excited state character. In OLEDs, 3a exhibits a maximum luminance of 9054 cd m?2 and an EQE up to 7.1%, which is the first example of highly efficient blue OLEDs based on the sole enol‐form emission of 2‐(2′‐hydroxyphenyl)azoles.  相似文献   

11.
Compound semiconductors are the basis for many of the highest performance optical and electronic devices in use today. Their widespread commercial application has, however, been limited due to the high cost of substrates. Device costs can be significantly reduced if the substrate is reused in a simple, totally non‐destructive and rapid process. Here, a method that allows the indefinite reuse and recycling of wafers is demonstrated, employing a combination of epitaxial “protection layers”, plasma cleaning techniques that return the wafers to their original, pristine, and epi‐ready condition following epitaxial layer removal, and adhesive‐free bonding to a secondary plastic substrate. The generality of this process is demonstrated by fabricating high performance GaAs‐based photovoltaic cells, light emitting diodes, and metal‐semiconductor field effect transistors that are transferred without loss of performance onto flexible and lightweight plastic substrates, and then the parent wafer is recycled for subsequent growth of additional device layers. This process potentially leads to a transformational change in device cost, arising from the inevitable consumption of the wafer that accompanies conventional epitaxial liftoff followed by chemo‐mechanical polishing.  相似文献   

12.
Today's state‐of‐the‐art phosphorescent organic light‐emitting diodes (PhOLEDs) must rely on the host‐guest doping technique to decrease triplet quenching and increase device efficiency. However, doping is a sophisticated device fabrication process. Here, a Pt(II)‐based complex with a near unity photoluminescence quantum yield and excellent electron transporting properties in the form of neat film is reported. Simplified doping‐free white PhOLED and yellow‐orange PhOLED based on this emitter achieve rather low operating voltages (2.2–2.4 V) and very high power efficiencies of approximately 80 lm W?1 (yellow‐orange) and 50 lm W?1 (white), respectively, without any light extraction enhancement. Furthermore, the efficient white device also exhibits high color stability. No color shift is observed during the entire operation of the device. Analysis of the device's operational mechanism has been postulated in terms of exciton and polaron formation and fate. It is found that using the efficient neat Pt(II)‐complex as a homogeneous emitting and electron transporting layer and an ambipolar blue emitter are determining factors for achieving such a high efficiency.  相似文献   

13.
A solution‐based fabrication of flexible and light‐weight light‐emitting devices on paper substrates is reported. Two different types of paper substrates are coated with a surface‐emitting light‐emitting electrochemical cell (LEC) device: a multilayer‐coated specialty paper with an intermediate surface roughness of 0.4 μm and a low‐end and low‐cost copy paper with a large surface roughness of 5 μm. The entire device fabrication is executed using a handheld airbrush, and it is notable that all of the constituent layers are deposited from solution under ambient air. The top‐emitting paper‐LECs are highly flexible, and display a uniform light emission with a luminance of 200 cd m?2 at a current conversion efficacy of 1.4 cd A?1.  相似文献   

14.
The development of blue materials with good efficiency, even at high brightness, with excellent color purity, simple processing, and high thermal stability assuring adequate device lifetime is an important remaining challenge for organic light‐emitting didoes (OLEDs) in displays and lightning applications. Furthermore, these various features are typically mutually exclusive in practice. Herein, four novel green and blue light‐emitting materials based on a monothiatruxene core are reported together with their photophysical and thermal properties, and performance in solution‐processed OLEDs. The materials show excellent thermal properties with high glass transition temperatures ranging from 171 to 336 °C and decomposition temperatures from 352 to 442 °C. High external quantum efficiencies of 3.7% for a deep‐blue emitter with CIE color co‐ordinates (0.16, 0.09) and 7% for green emitter with color co‐ordinates (0.22, 0.40) are achieved at 100 cd m?2. The efficiencies observed are exceptionally high for fluorescent materials with photoluminescence quantum yields of 24% and 62%, respectively. The performance at higher brightness is very good with only 38% and 17% efficiency roll‐offs at 1000 cd m?2. The results indicate that utilization of this unique molecular design is promising for efficient deep‐blue highly stable and soluble light‐emitting materials.  相似文献   

15.
Large‐area, ultrathin light‐emitting devices currently inspire architects and interior and automotive designers all over the world. Light‐emitting electrochemical cells (LECs) and quantum dot light‐emitting diodes (QD‐LEDs) belong to the most promising next‐generation device concepts for future flexible and large‐area lighting technologies. Both concepts incorporate solution‐based fabrication techniques, which makes them attractive for low cost applications based on, for example, roll‐to‐roll fabrication or inkjet printing. However, both concepts have unique benefits that justify their appeal. LECs comprise ionic species in the active layer, which leads to the omission of additional organic charge injection and transport layers and reactive cathode materials, thus LECs impress with their simple device architecture. QD‐LEDs impress with purity and opulence of available colors: colloidal quantum dots (QDs) are semiconducting nanocrystals that show high yield light emission, which can be easily tuned over the whole visible spectrum by material composition and size. Emerging technologies that unite the potential of both concepts (LEC and QD‐LED) are covered, either by extending a typical LEC architecture with additional QDs, or by replacing the entire organic LEC emitter with QDs or perovskite nanocrystals, still keeping the easy LEC setup featured by the incorporation of mobile ions.  相似文献   

16.
Photodetectors are fabricated from individual single‐crystal CdSe nanoribbons, and the photoresponse properties of the devices are studied systematically. The photodetector shows a high sensitivity towards excitation wavelength with a sharp cut‐off at 710 nm, corresponding to the bandgap of CdSe. The device exhibits a high photo‐to‐dark current ratio of five orders of magnitude at 650 nm, and can function with excellent stability, reproducibility, and high response speed (< 1 ms) in a wide range of switching frequency (up to 300 Hz). The photocurrent of the device shows a power‐law dependence on light intensity. This finding together with the analysis of the light intensity‐dependent response speed reveals the existence of various traps at different energy levels (shallow and deep) in the bandgap. Coating with a thin SiO2 isolating layer increases the photocurrent but decreases the response speed of the CdSe nanoribbon, which is attributed to reduction of recombination centers on ribbon surface.  相似文献   

17.
Light‐emitting diodes exhibiting efficient pure‐white‐light electroluminescence have been successfully developed by using a single polymer: polyfluorene derivatives with 1,8‐naphthalimide chromophores chemically doped onto the polyfluorene backbones. By adjusting the emission wavelength of the 1,8‐naphthalimide components and optimizing the relative content of 1,8‐naphthalimide derivatives in the resulting polymers, white‐light electroluminescence from a single polymer, as opposed to a polymer blend, has been obtained in a device with a configuration of indium tin oxide/poly(3,4‐ethylenedioxythiophene)(50 nm)/polymer(80 nm)/Ca(10 nm)/Al(100 nm). The device exhibits Commission Internationale de l'Eclairage coordinates of (0.32,0.36), a maximum brightness of 11 900 cd m–2, a current efficiency of 3.8 cd A–1, a power efficiency of 2.0 lm W–1, an external quantum efficiency of 1.50 %, and quite stable color coordinates at different driving voltages, even at high luminances of over 5000 cd m–2.  相似文献   

18.
Flexible alternating‐current electroluminescent (ACEL) devices have attracted considerable attention for their ability to produce uniform light emission under bent conditions and have enormous potential for applications in back lighting panels, decorative lighting in automobiles, and panel displays. Nevertheless, flexible ACEL devices generally require a high operating bias, which precludes their implementation in low power devices. Herein, solution‐processed La‐doped barium titanate (BTO:La) nanocuboids (≈150 nm) are presented as high dielectric constant (high‐k) nanodielectrics, which can enhance the dielectric constant of an ACEL device from 2.6 to 21 (at 1 kHz), enabling the fabrication of high‐performance flexible ACEL devices with a lower operating voltage as well as higher brightness (≈57.54 cd m?2 at 240 V, 1 kHz) than devices using undoped BTO nanodielectrics (≈14.3 cd m?2 at 240 V, 1 kHz). Furthermore, a uniform brightness across the whole panel surface of the flexible ACEL devices and excellent device reliability are achieved via the use of uniform networks of crossaligned silver nanowires as highly conductive and flexible electrodes. The results offer experimental validation of high‐brightness flexible ACELs using solution‐processed BTO:La nanodielectrics, which constitutes an important milestone toward the implementation of high‐k nanodielectrics in flexible displays.  相似文献   

19.
A novel blue‐emitting material, 2‐tert‐butyl‐9,10‐bis[4‐(1,2,2‐triphenylvinyl)phenyl]anthracene ( TPVAn ), which contains an anthracene core and two tetraphenylethylene end‐capped groups, has been synthesized and characterized. Owing to the presence of its sterically congested terminal groups, TPVAn possesses a high glass transition temperature (155 °C) and is morphologically stable. Organic light‐emitting diodes (OLEDs) utilizing TPVAn as the emitter exhibit bright saturated‐blue emissions (Commission Internationale de L'Eclairage (CIE) chromaticity coordinates of x = 0.14 and y = 0.12) with efficiencies as high as 5.3 % (5.3 cd A–1)—the best performance of non‐doped deep blue‐emitting OLEDs reported to date. In addition, TPVAn doped with an orange fluorophore served as an authentic host for the construction of a white‐light‐emitting device that displayed promising electroluminescent characteristics: the maximum external quantum efficiency reached 4.9 % (13.1 cd A–1) with CIE coordinates located at (0.33, 0.39).  相似文献   

20.
The rapid development of charge transporting and light‐emitting organic materials in the last decades has advanced device performance, highlighting the high potential of light‐emitting transistors (LETs). Demonstrated for the first time over 15 years ago, LETs have transformed from an optoelectronic curiosity to a serious competitor in the race for cheaper and more efficient displays, also showing promise for injection lasers. Thus, what is an LET, how does it work, and what are the current challenges for its integration into mainstream technologies? Herein, some light is shed on these questions. This work also provides the fundamental working principle of LETs, materials that have been used, and device physics and architectures involved in the progression of LET technology. The state‐of‐the‐art development of LETs is also explored as prospect avenues for the future of research and applications in this area.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号