首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Recent progress in asymmetric organocatalysis has led to the development of several asymmetric transformations that employ various substrates. Among these, cyanoacetates have emerged as excellent nucleophiles in conjugate addition, alkylation, Mannich and α‐heterofunctionalization reactions. In this review we discuss the enantioselective functionalization of 2‐cyanoacetates through organocatalytic reactions.

  相似文献   


2.
Vitellogenesis, a key process in oviparous animals, is characterized by enhanced synthesis of the lipoprotein vitellogenin, which serves as the major yolk‐protein precursor. In most oviparous animals, and specifically in crustaceans, vitellogenin is mainly synthesized in the hepatopancreas, secreted to the hemolymph, and taken up into the ovary by receptor‐mediated endocytosis. In the present study, localization of the vitellogenin receptor and its interaction with vitellogenin were investigated in the freshwater prawn Macrobrachium rosenbergii. The receptor was immuno‐histochemically localized to the cell periphery and around yolk vesicles. A receptor blot assay revealed that the vitellogenin receptor interacts with most known vitellogenin subunits, the most prominent being the 79 kDa subunit. The receptor was, moreover, able to interact with trypsin‐digested vitellogenin peptides. By combining a novel peptide‐array approach with tandem mass spectrometry, eleven vitellogenin‐derived peptides that interacted with the receptor were identified. A 3D model of vitellogenin indicated that four of the identified peptides are N‐terminally localized. One of the peptides is homologous to the receptor‐recognized site of vertebrate vitellogenin, and assumes a conserved β‐sheet structure. These findings suggest that this specific β‐sheet region in the vitellogenin N‐terminal lipoprotein domain is the receptor‐interacting site, with the rest of the protein serving to enhance affinity for the receptor. The conservation of the receptor recognition site in invertebrate and vertebrate vitellogenin might have vast implications for oviparous species reproduction, development, immunity, and pest management.  相似文献   

3.
α‐Conotoxin MII (α‐CTxMII) is a 16‐residue peptide with the sequence GCCSNPVCHLEHSNLC, containing Cys2–Cys8 and Cys3–Cys16 disulfide bonds. This peptide, isolated from the venom of the marine cone snail Conus magus, is a potent and selective antagonist of neuronal nicotinic acetylcholine receptors (nAChRs). To evaluate the impact of channel–ligand interactions on ligand‐binding affinity, homology models of the heteropentameric α3β2‐nAChR were constructed. The models were created in MODELLER with the aid of experimentally characterized structures of the Torpedo marmorata‐nAChR (Tm‐nAChR, PDB ID: 2BG9) and the Aplysia californica‐acetylcholine binding protein (Ac‐AChBP, PDB ID: 2BR8) as templates for the α3‐ and β2‐subunit isoforms derived from rat neuronal nAChR primary amino acid sequences. Molecular docking calculations were performed with AutoDock to evaluate interactions of the heteropentameric nAChR homology models with the ligands acetylcholine (ACh) and α‐CTxMII. The nAChR homology models described here bind ACh with binding energies commensurate with those of previously reported systems, and identify critical interactions that facilitate both ACh and α‐CTxMII ligand binding. The docking calculations revealed an increased binding affinity of the α3β2‐nAChR for α‐CTxMII with ACh bound to the receptor, and this was confirmed through two‐electrode voltage clamp experiments on oocytes from Xenopus laevis. These findings provide insights into the inhibition and mechanism of electrostatically driven antagonist properties of the α‐CTxMIIs on nAChRs.  相似文献   

4.
5.
6.
Chiral phosphoric acids have been identified as highly efficient organocatalysts for the asymmetric transfer hydrogenation of α‐imino esters and amide. Utilizing Hantzsch esters as the hydrogen donor, versatile highly enantioenriched α‐amino esters and their derivatives were obtained with up to 98 % ee.  相似文献   

7.
By carefully screening the organoselenium pre‐catalysts and optimizing the reaction conditions, simple dibenzyl diselenide was found to be the best pre‐catalyst for Baeyer–Villiger oxidation of (E)‐α,β‐unsaturated ketones with the green oxidant hydrogen peroxide at room temperature. The organoselenium catalyst used in this reaction could be recycled and reused several times. This new method was suitable not only for methyl unsaturated ketones, but also for alkyl and aryl unsaturated ketones. Therefore, it provided a direct, mild, practical, highly functional group‐tolerant process for the chemoselective preparation of the versatile (E)‐vinyl esters from the readily available (E)‐α,β‐unsaturated ketones. A possible mechanism was also proposed to rationalize the activity of the organoselenium catalyst in the presence of hydrogen peroxide in this Baeyer–Villiger oxidation reaction.

  相似文献   


8.
Although sigma‐2 (σ2) receptors are still enigmatic proteins, they are promising targets for tumor treatment and diagnosis. With the aim of clarifying their role in oncology, we developed a σ2‐selective fluorescent tracer (compound 5 ) as a specific tool to study σ2 receptors. By using flow cytometry with 5 , we performed competition binding studies on three different cell lines where we also detected the content of the σ2 receptors, avoiding the inconvenient use of radioligands. Comparison with a previously developed mixed σ12 fluorescent tracer ( 1 ) also allowed for the detection of σ1 receptors within these cells. Results obtained by flow cytometry with tracers 1 and 5 were confirmed by standard methods (western blot for σ1, and Scatchard analysis for σ2 receptors). Thus, we have produced powerful new tools for research on the σ whose reliability and adaptability to a number of fluorescence techniques will be useful to elucidate the roles of σ receptors in oncology.  相似文献   

9.
Adrenergic receptor β3 (ADRβ3) is a member of the rhodopsin-like G protein-coupled receptor family. The binding of the ligand to ADRβ3 activates adenylate cyclase and increases cAMP in the cells. ADRβ3 is highly expressed in white and brown adipocytes and controls key regulatory pathways of lipid metabolism. Trp64Arg (W64R) polymorphism in the ADRβ3 is associated with the early development of type 2 diabetes mellitus, lower resting metabolic rate, abdominal obesity, and insulin resistance. It is unclear how the substitution of W64R affects the functioning of ADRβ3. This study was initiated to functionally characterize this obesity-linked variant of ADRβ3. We evaluated in detail the expression, subcellular distribution, and post-activation behavior of the WT and W64R ADRβ3 using single cell quantitative fluorescence microscopy. When expressed in HEK 293 cells, ADRβ3 shows a typical distribution displayed by other GPCRs with a predominant localization at the cell surface. Unlike adrenergic receptor β2 (ADRβ2), agonist-induced desensitization of ADRβ3 does not involve loss of cell surface expression. WT and W64R variant of ADRβ3 displayed comparable biochemical properties, and there was no significant impact of the substitution of tryptophan with arginine on the expression, cellular distribution, signaling, and post-activation behavior of ADRβ3. The obesity-linked W64R variant of ADRβ3 is indistinguishable from the WT ADRβ3 in terms of expression, cellular distribution, signaling, and post-activation behavior.  相似文献   

10.
The ρ‐containing γ‐aminobutyric acid type A receptors (GABAARs) play an important role in controlling visual signaling. Therefore, ligands that selectively target these GABAARs are of interest. In this study, we demonstrate that the partial GABAAR agonist imidazole‐4‐acetic acid (IAA) is able to penetrate the blood–brain barrier in vivo; we prepared a series of α‐ and N‐alkylated, as well as bicyclic analogues of IAA to explore the structure–activity relationship of this scaffold focusing on the acetic acid side chain of IAA. The compounds were prepared via IAA from l ‐histidine by an efficient minimal‐step synthesis, and their pharmacological properties were characterized at native rat GABAARs in a [3H]muscimol binding assay and at recombinant human α1β2γ2S and ρ1 GABAARs using the FLIPR? membrane potential assay. The (+)‐α‐methyl‐ and α‐cyclopropyl‐substituted IAA analogues ((+)‐ 6 a and 6 c , respectively) were identified as fairly potent antagonists of the ρ1 GABAAR that also displayed significant selectivity for this receptor over the α1β2γ2S GABAAR. Both 6 a and 6 c were shown to inhibit GABA‐induced relaxation of retinal arterioles from porcine eyes.  相似文献   

11.
A highly enantioselective Michael addition of cyclic 1,3‐dicarbonyl compounds to β,γ‐unsaturated α‐keto esters catalyzed by amino acid‐derived thiourea‐tertiary‐amine catalysts is presented. Using 5 mol% of a novel tyrosine‐derived thiourea catalyst, a series of chiral coumarin derivatives were obtained in excellent yields (up to 99%) and with up to 96% ee under very mild conditions within a short reaction time.  相似文献   

12.
A new class of nitro‐functionalized α,β‐unsaturated esters has been prepared by a regio‐ and diastereoselective Michael addition of nitroalkanes to β‐nitroacrylates, performed at room temperature, under carbonate on polymer as promoter, and in the presence of ethyl acetate as eco‐friendly solvent. Moreover, by the modular choice of the reaction conditions the method allows the synthesis of 1,3‐butadiene‐2‐carboxylates.  相似文献   

13.
PPARγ agonist DIM‐Ph‐4‐CF 3 , a template for RXRα agonist (E)‐3‐[5‐di(1‐methyl‐1H‐indol‐3‐yl)methyl‐2‐thienyl] acrylic acid: DIM‐Ph‐CF3 is reported to inhibit cancer growth independent of PPARγ and to interact with NR4A1. As both receptors dimerize with RXR, and natural PPARγ ligands activate RXR, DIM‐Ph‐4‐CF3 was investigated as an RXR ligand. It displaces 9‐cis‐retinoic acid from RXRα but does not activate RXRα. Structure‐based direct design led to an RXRα agonist.

  相似文献   


14.
An efficient catalytic asymmetric epoxidation of β‐trifluoromethyl‐β,β‐disubstituted unsaturated ketones has been achieved by a pentafluorine‐substituted phase‐transfer catalyst with hydrogen peroxide (30%). Thus, the β‐trifluoromethyl‐α,β‐epoxy ketones with a quaternary carbon centre were obtained in excellent diastereoselectivities (up to 100:1 dr) and excellent enantioselectivities (up to 99.7% ee). Low catalyst loading, recycle of catalyst, environmentally benign oxidant and easy transformation of the epoxides into medicinally important trifluoromethylated intermediate make our protocol much more practical.  相似文献   

15.
Certain enzymes of the glycoside hydrolase family 20 (GH20) exert transglycosylation activity and catalyze the transfer of β‐N‐acetylglucosamine (GlcNAc) from a chitobiose donor to lactose to produce lacto‐N‐triose II (LNT2), a key human milk oligosaccharide backbone moiety. The present work is aimed at increasing the transglycosylation activity of two selected hexosaminidases, HEX1 and HEX2, to synthesize LNT2 from lactose and chitobiose. Peptide pattern recognition analysis was used to categorize all GH20 proteins in subgroups. On this basis, we identified a series of proteins related to HEX1 and HEX2. By sequence alignment, four additional loop sequences were identified that were not present in HEX1 and HEX2. Insertion of these loop sequences into the wild‐type sequences induced increased transglycosylation activity for three out of eight mutants. The best mutant, HEX1GTEPG, had a transglycosylation yield of LNT2 on the donor that was nine times higher than that of the wild‐type enzyme. Homology modeling of the enzymes revealed that the loop insertion produced a more shielded substrate‐binding pocket. This shielding is suggested to explain the reduced hydrolytic activity, which in turn resulted in the increased transglycosylation activity of HEX1GTEPG.  相似文献   

16.
This update describes a highly efficient organocatalytic aldol reaction of ketones and β,γ‐unsaturated α‐keto esters for constructing the chiral tertiary alcohol motif. With the application of 9‐amino(9‐deoxy)epi‐Cinchona alkaloid and an acidic additive as catalysts, both acyclic and cyclic ketones react with β,γ‐unsaturated α‐keto esters smoothly to afford aldol adducts in good to excellent yields and asymmetric induction. This protocol offers a new pathway for the construction of adjacent chiral carbon centers and the synthesis of chiral β‐hydroxy carbonyl compounds.  相似文献   

17.
Highly modular chiral amino diol derivatives have been used as organocatalysts in the enantioselective α‐chlorination of cyclic β‐keto esters. Optimization of the catalyst structure and the reaction conditions has allowed the synthesis of optically active α‐chlorinated products with high enantioselectivities (up to 96% ee) using inexpensive commercially available N‐chlorosuccinimide (NCS) as the chlorine source under mild conditions.  相似文献   

18.
The kainate receptors are the least studied subfamily of ionotropic glutamate receptors. These receptors are thought to have a neuromodulatory role and have been associated with a variety of disorders in the central nervous system. This makes kainate receptors interesting potential drug targets. Today, structures of the ligand binding domain (LBD) of the kainate receptor GluK3 are only known in complex with the endogenous agonist glutamate, the natural product kainate, and two synthetic agonists. Herein we report structures of GluK3 LBD in complex with two 2,4‐syn‐functionalized (S)‐glutamate analogues to investigate their structural potential as chemical scaffolds. Similar binding affinities at GluK3 were determined for the 2‐(methylcarbamoyl)ethyl analogue (Ki=4.0 μM ) and the 2‐(methoxycarbonyl)ethyl analogue (Ki=1.7 μM ), in agreement with the similar positioning of the compounds within the binding pocket. As the binding affinity is similar to that of glutamate, this type of Cγ substituent could be used as a scaffold for introduction of even larger substituents reaching into unexplored binding site regions to achieve subtype selectivity.  相似文献   

19.
Nicotinic acetylcholine receptors (nAChRs) play an important role in many central nervous system disorders such as Alzheimer’s and Parkinson’s diseases, schizophrenia, and mood disorders. The α4β2 subtype has emerged as an important target for the early diagnosis and amelioration of Alzheimer’s disease symptoms. Herein we report a new class of α4β2 receptor ligands characterized by a basic pyrrolidine nucleus, the basicity of which was properly decreased through the insertion of a fluorine atom at the 3‐position, and a pyridine ring carrying at the 3‐position substituents known to positively affect affinity and selectivity toward the α4β2 subtype. Derivatives 3‐(((2S,4R)‐4‐fluoropyrrolidin‐2‐yl)methoxy)‐5‐(phenylethynyl)pyridine ( 11 ) and 3‐((4‐fluorophenyl)ethynyl)‐5‐(((2S,4R)‐4‐fluoropyrrolidin‐2‐yl)methoxy)pyridine ( 12 ) were found to be the most promising ligands identified in this study, showing good affinity and selectivity for the α4β2 subtype and physicochemical properties predictive of a relevant central nervous system penetration.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号