首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Polypropylene/organoclay nanocomposites modified with different maleic anhydride grafted polypropylene (PPgMA) compatibilizers were compounded on a twin‐screw extruder. The effectiveness of the feeding sequence and compatibilizer type toward the dispersion of organoclay into PP matrix was critically studied. The composites prepared with side feed appeared to provide better dispersion and modulus improvement over that with hopper feed. The effect of PPgMA compatibilizers, including PB3150, PB3200, PB3000, and E43, with a wide range of maleic anhydride (MA) content and molecular weight was also examined. The structure was investigated with X‐ray diffraction and transmission electron microscopy. The relative complex viscosity curves also revealed a systematic trend with the extent of exfoliation and showed promise for quantifying the hybrid structure of the nanocomposites. Mechanical properties were determined by dynamical mechanical analysis and tensile and impact tests. Maleated polypropylene with low‐melt flow index and moderate MA content enhanced clay dispersion and resulted in significant improvement in tensile modulus of the nanocomposites. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 93: 100–112, 2004  相似文献   

2.
Maleic anhydride grafted polypropylene (PP‐g‐MA) and organically modified clay composites were prepared in a plasticorder. PP‐g‐MAs, including Polybond PB3150, Polybond PB3200, Polybond PB3000, and Epolene E43, with a wide range of maleic anhydride (MA) concentrations and molecular weights were used. The structure was investigated with X‐ray diffraction (XRD) and transmission electron microscopy (TEM). PP‐g‐MA compatibilizers gave rise to similar degrees of dispersion beyond the weight ratio of 3/1, with the exception of E43, which had the highest MA content and the lowest molecular weight. The thermal instability and high melt index were responsible for the ineffective modification by E43. Furthermore, PP‐g‐MA with a lower molecular weight and a higher melt index had to be compounded at a lower mixing temperature to achieve a reasonable level of torque for clay dispersion. Polypropylene/organoclay nanocomposites were then modified with different levels of PP‐g‐MA compatibilizers with a twin‐screw extruder. The polypropylene/E43/clay system, as shown by XRD patterns and TEM observations, yielded the poorest clay dispersion of the compatibilizers under investigation. The curves of the relative complex viscosity also revealed a systematic trend with the extent of exfoliation and showed promise for quantifying the hybrid structure of the nanocomposites. The mechanical properties and thermal stability were determined by dynamical mechanical analysis and thermogravimetric analysis, respectively. Although PP‐g‐MA with a lower molecular weight led to better clay dispersion in the polypropylene nanocomposites, it caused deterioration in both the mechanical and thermal properties of the hybrid systems. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 97: 1667–1680, 2005  相似文献   

3.
Melt rheology and processability of exfoliated polypropylene (PP)/layered silicate nanocomposites were investigated. The nanocomposites were prepared by melt compounding process in the presence or absence of a PP‐based maleic anhydride compatibilizer. PP/layered silicate nanocomposites showed typical rheological properties of exfoliated nanocomposites such as nonterminal solid‐like plateau behavior at low frequency region in oscillatory shear flow, higher steady shear viscosity at low shear rate region, and outstanding strain hardening behavior in uniaxial elongational flow. The melt processability of exfoliated PP/layered silicate nanocomposites was significantly improved due to good dispersion of layered silicates and increased molecular interaction between the PP matrix and the layered silicate organoclay. Small‐angle X‐ray scattering and transmission electron microscopy results revealed that the layered silicate organoclay was exfoliated and good interaction between PP matrix and organoclay was achieved by using the PP‐g‐MAH compatibilizer. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 103: 3506–3515, 2007  相似文献   

4.
The generation of nanocomposites upon intercalation and exfoliation of clay tactoids using melt compounding is a difficult process. In this study various polymeric binders were melt compounded with organophilic clay particles using myriad methods, including sonication, batch mixing, and twin screw extrusion. The characterization of the compounded samples employing X‐ray diffraction (XRD) and transmission electron microscopy (TEM) revealed that there is little intercalation and exfoliation when nonpolar poly(dimethyl siloxane) (PDMS) and poly(propylene) (PP) binders were used, resulting in no significant changes in the dynamic properties of the suspensions upon small‐amplitude oscillatory shearing. On the other hand, when polar polymeric binders, i.e., silanol terminated poly(dimethyl siloxane) and maleic anhydride modified PP were used for compounding with organoclays, TEM and XRD revealed intercalation with some partial exfoliation, resulting in increases in the dynamic properties, along with sensitivity to the thermomechanical history during processing. These results reinforce earlier findings, which suggest that the interfacial properties between the organoclays and the polymeric binders need to be tailored properly to enable the generation of nanocomposites of organoclays using melt compounding technologies. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 104: 1391–1398, 2007  相似文献   

5.
熔体齿轮泵国产化的探讨   总被引:1,自引:0,他引:1  
刘永红  熊伟 《聚酯工业》2003,16(3):12-14
叙述了国内外熔体齿轮泵的现状和发展趋势,并对熔体齿轮泵的主要零件的材料和熔体齿轮泵国产化的必要性进行了详细的论述。  相似文献   

6.
7.
王荣满 《聚酯工业》2004,17(4):58-61
通过对聚酯装置增容和后接直纺长丝前后熔体齿轮泵工况变化的统计分析,研究其运行不稳定的原因,提出改造措施,包括滑动轴承润滑油槽,齿轮泵的机械密封,降低齿轮泵出口压力,改自动提速为手动提速等等。  相似文献   

8.
Preparation of thermally stable recycled PET‐organoclay nanocomposites with improved processing and mechanical properties is a challenging task from the environmental as well as industrial and commercial point of view. In this work, both modification of sodium‐type montmorillonite with 1,2‐dimethyl‐3‐octadecyl‐1H‐imidazol‐3‐ium chloride and additional treatment with [3‐(glycidyloxy)propyl]trimethoxysilane was performed. Thermal stability of the organoclays and nanocomposites prepared by melt compounding was tested by thermogravimetric analysis, differential scanning calorimetry, and melt rheology. In comparison with the organoclays modified with quaternary ammonium compounds, the prepared clays showed substantial suppression of matrix degradation during melt mixing. The increase in interlayer distance of silicate platelets and homogeneity of dispersions in the recycled and virgin PET matrices have been evaluated by transmission electron microscopy and wide‐angle X‐ray scattering. The higher degree of delamination in the nanocomposites filled with imidazole organoclays was in a good agreement with improved rheological characteristics and led to significant enhancement in mechanical properties and thermal stability. A difference in structure (besides the level of delamination and homogeneity of silicate platelets) of recycled versus virgin PET nanocomposites was detected by X‐ray diffraction patterns. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007  相似文献   

9.
Structural characterization in polymer nanocomposites is usually performed using X‐ray scattering and microscopic techniques, whereas the improvements in processing and mechanical properties are commonly investigated by rotational rheometry and tensile testing. However, all of these techniques are time consuming and require quite expensive scientific equipment. It has been shown that a fast and efficient way of estimating the level of reinforcement in polymer nanocomposites can be performed by melt extensional rheology, because it is possible to correlate the level of melt strength with mechanical properties, which reflect both the 3D network formed by the clay platelets/polymer chains as well as final molecular structure in the filled system. The physical network made of silicate filler and polymer matrix has been evaluated by X‐ray diffraction and transmission electron microscopy. Extensional rheometry and tensile testing have been used to measure efficiency of the compatibilizer amount in a polypropylene‐nanoclay system. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

10.
Wan Duk Lee  Hyung-Mi Lim 《Polymer》2006,47(4):1364-1371
Thermal, rheological and mechanical properties of layered double hydroxide (LDHs)/PET nanocomposites were investigated. To enhance the compatibility between PET matrix and LDHs, organic modification of parent LDH having carbonate anion was carried out using various anionic surfactants such as dodecylsulfate (DS), dodecylbenzenesulfonate (DBS), and octylsulfate(OS) by rehydration process. Then, PET nanocomposites with LDH content of 0, 1.0, and 2.0 wt% were prepared by direct melt-compounding. The dispersion morphologies were observed by transmission electron microscopy and X-ray diffraction, indicating that LDH-DS were exfoliated in PET matrix. From the rheology study, there are some network structures owing to filler-filler and/or filler-matrix interactions in nanocomposite systems. Consequently, DS intercalated LDH provided good compatibility with PET molecules, resulting in exfoliated LDH-DS/PET nanocomposites having enhanced thermal and mechanical properties as compared to other nanocomposites as well as homo PET.  相似文献   

11.
Graphene nanosheets were prepared by complete oxidation of pristine graphite followed by thermal exfoliation and reduction. Polyethylene terephthalate (PET)/graphene nanocomposites were prepared by melt compounding. Transmission electron microscopy observation indicated that graphene nanosheets exhibited a uniform dispersion in PET matrix. The incorporation of graphene greatly improved the electrical conductivity of PET, resulting in a sharp transition from electrical insulator to semiconductor with a low percolation threshold of 0.47 vol.%. A high electrical conductivity of 2.11 S/m was achieved with only 3.0 vol.% of graphene. The low percolation threshold and superior electrical conductivity are attributed to the high aspect ratio, large specific surface area and uniform dispersion of the graphene nanosheets in PET matrix.  相似文献   

12.
孙伟  魏铁锋  周巍 《化学工程师》2010,(6):41-42,59
高熔体强度聚丙烯(HMSPP)是聚丙烯改性的研究的重要产品之一。本文综述了高熔体强度聚丙烯的性能特点、制备方法、用途以及国内外研究和开发情况。  相似文献   

13.
Wood plastic composites (WPCs) are attracting a lot of interests because they are economic, environmentally friendly, and show fairly good performance. To improve the performance of a wood/polypropylene (PP) composite, an organoclay was incorporated as a nanosize filler in this work. WPCs were prepared by melt blending followed by compression molding, and their performance was investigated by universal testing machine, izod impact tester, dynamic mechanical analyzer, thermal mechanical analyzer, differential scanning calorimetry, and TGA. Maleic anhydride polypropylene copolymer (MAPP) was used to increase compatibility between the PP matrix and wood particles and also improve the dispersion and exfoliation of the organoclay in the PP matrix. XRD analysis showed that the matrix of the WPCs with organoclay had intercalated structure. The SEM images of the WPCs with MAPP showed improved interfacial adhesion between the matrix and wood particles. The degree of water absorption increased with immersion time, but it could be restrained by incorporating MAPP. The performance of the WPCs was improved by the incorporation of the organoclay. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

14.
Binary polyamide 66 nanocomposites containing 2 wt % organoclay, polyamide 66 blend containing 5 wt % impact modifier, and ternary polyamide 66 nanocomposites containing 2 wt % organoclay and 5 wt % impact modifier were prepared by melt compounding method. The effects of E-GMA and the types of the organoclays on the interaction between the organoclay and the polymer, dispersion of the organoclay, morphology, mechanical, flow, and thermal properties of the nanocomposites were investigated. Partial exfoliation and improved mechanical properties are observed for Cloisite® 15A and Cloisite® 25A nanocomposites. On the other hand, the organoclay was intercalated or in the form of tactoids in Cloisite® 30B nanocomposites. Components of the nanocomposites containing Cloisite® 15A and Cloisite® 25A were compounded in different addition orders. Mixing sequence of the components affected both the dispersion of the organoclay and the mechanical properties drastically. SEM analyses revealed that homogeneous dispersion of the organoclay results in a decrease in the domain sizes and promotes the improvements in the toughness of the materials. Melt viscosity was also found to have a profound effect on the dispersion of the organoclay according to MFI and XRD results. Crystallinity of the nanocomposites did not change significantly. It is only the type of the constituents and their addition order what dramatically influence the nanocomposite properties. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci 2008  相似文献   

15.
简述了Ziegler-Natta催化剂内给电子体的作用,指出通过内给电子体复配可以使其优势互补,得到综合性能更优的催化剂。深入调研了国内外相关单位的研究动向,以LyondellBasell公司、DOW公司、中国石油化工股份有限公司北京化工研究院等多个研究单位为着眼点,阐述了复配内给电子体的研究进展,展望了内给电子体复配的广阔前景。  相似文献   

16.
乔飞  郭满吉  窦海 《聚酯工业》2012,25(5):51-52
分析了熔体泵泵头滑动轴承的工作状态,密封系统的结构机理调节及泵头漏气的主要原因,通过对熔体泵正确维护,以减少磨损,以延长泵的使用寿命。  相似文献   

17.
分析了PET装置熔体泵从动轴断裂的原因,国产化改造方案的实施过程,试用中存在的问题以及熔体泵国产化的意义。  相似文献   

18.
高熔体强度聚丙烯的研制   总被引:1,自引:0,他引:1  
用过氧化物引发聚丙烯(PP)交联制备高熔体强度聚丙烯(HMSPP),研究了过氧化物的用量、反应温度、螺杆转速对HMSPP性能的影响。得到的HMSPP比普通PP的熔体强度提高约3倍。用所研制的HMSPP进行发泡实验,制得泡孔结构较均匀且闭孔的发泡制品。  相似文献   

19.
利用反应挤出技术研究了不同反应物对聚丙烯(PP)熔体强度的影响。考察了不同用量的低密度聚乙烯(LDPE)、乙烯-乙酸乙烯酯共聚物(EVA)、季戊四醇三丙烯酸酯(PETA)、二乙烯基苯(DVB)以及上述物质的混合物在过氧化二异丙苯的引发下对PP熔体强度、熔体流动速率、熔垂的影响。结果表明,LDPE、EVA的加入对产物熔体强度的影响有限,PFTA也只能使其提高1倍左右;而DVB的加入可使产物的熔体强度显著提高,仅加入1%就可使熔体强度提高20倍,熔垂实验也证明了这一点;几种反应物混合使用效果不如单独使用好。  相似文献   

20.
In this paper, polypropylene (PP)/organophilic montmorillonite (OMMT) nanocomposites were successfully prepared without any compatibilizers by solid‐state shear compounding (S3C) using pan‐mill equipment. X‐ray diffraction (XRD) patterns show that the OMMT characteristic (001) peak at 2θ equal to 4.59 degrees disappeared for the milled OMMT and corresponding composites. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) photographs show that the thickness of pan‐milled OMMT decreased from ca 100–200 nm to ca 30–50 nm, and OMMT was partly exfoliated in the PP matrix because the pan‐type mill can exert fairly strong squeezing force in the normal direction and shearing force in both radial and tangential directions on milled materials. PP/OMMT nanocomposites at low OMMT loading have higher melting point, crystallization temperature, thermal degradation temperature and heat distortion temperature than those of neat PP. Moreover, addition of OMMT accelerates crystallization of PP significantly. S3C is a novel approach to prepare polymer/layered silicate nanocomposites with high performances at low filler loading. Copyright © 2004 Society of Chemical Industry  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号