首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The migration of sulfur from natural rubber (NR) compound to the ground waste ethylene‐propylene‐diene monomer (EPDM) rubber phase may have caused the cure incompatibility between these two rubbers. Optimization of accelerators had been adopted to overcome the cure incompatibility in NR/(R‐EPDM) blends as well as to get increased curative distribution. In this study, blends of NR and R‐EPDM were prepared. The effect of accelerator type on curing characteristics, tensile properties, and dynamic mechanical properties of 70/30/NR/(R‐EPDM) blend was investigated. Four types of commercial accelerators were selected [ie, N‐tert‐butyl‐2‐benzothiazyl‐sulphonamide , N‐cyclohexyl‐benzothiazyl‐sulfenamide (CBS), tetramethylthiuram disulfide, and 2‐mercaptobenzothiazol]. It was found that the tensile strength of the blends cured in the presence of CBS was relatively higher than the other three accelerators. Scanning electron micrographs of CBS‐cured NR/(R‐EPDM) blends exhibited more roughness and cracking path, indicating that higher energy was required toward the fractured surface. The high crosslinking density observed from the swelling method could be verified from the storage modulus (E′) and damping factor (tan δ) where (tetramethylthiuram disulfide)‐cured NR/(R‐EPDM) blends provided a predominant degree of crosslinking followed by N‐tert‐butyl‐2‐benzothiazyl‐sulphonamide , CBS, and 2‐mercaptobenzothiazol, respectively. J. VINYL ADDIT. TECHNOL., 21:79–88, 2015. © 2014 Society of Plastics Engineers  相似文献   

2.
EPDM incorporated into blends of natural rubber/butadiene rubber (NR/BR) improves ozone resistance. In this work, the inferior mechanical properties of NR/BR/EPDM blends generally obtained by conventional straight mixing are overcome by utilizing a reactive processing technique. The entire amount of curatives, based on a commonly employed accelerator N‐cyclohexyl‐2‐benzothiazole sulfenamide (CBS) and sulfur, is first added into the EPDM phase. After a thermal pretreatment step tuned to the scorch time of the EPDM phase, the modified EPDM is mixed with premasticated NR/BR. The reactive blend vulcanizates show a significant improvement in tensile properties: tensile strength and elongation at break, as compared to those prepared by straight mixing, in both gum and carbon black‐filled blends. The increase of tensile properties in gum and filled reactive blend vulcanizates does suggest that the reactive processing technique leads to more homogeneous blends due to, either a better crosslink distribution, or more homogeneous filler distribution, or both. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 103:2538–2546, 2007  相似文献   

3.
Simple blending of natural rubber/ethylene–propylene–diene rubber (NR/EPDM) generally results in inferior mechanical properties because of curative migration and their differences for filler affinity. In this work, the 70/30 and 50/50 NR/EPDM blends prepared by reactive processing techniques were investigated and compared with the simple, nonreactive blends. The reactive blend compounds were prepared by preheating EPDM, containing all curatives to a predetermined time related to their scorch time prior to blending with NR. For the 70/30 gum blends, four types of accelerators were studied: 2,2‐mercaptobenzothiazole (MBT), 2,2‐dithiobis‐ (benzothiazole) (MBTS), N‐cyclohexyl‐2‐benzothiazolesulfenamide (CBS), and Ntert‐butyl‐2‐benzothiazolesulfenamide (TBBS). When compared with the simple blends, the reactive blends cured with CBS and MBTS showed a clearly improved tensile strength whereas the increase of tensile strength in the blends cured with TBBS and MBT was marginal. However, a dramatic improvement of ultimate tensile properties in the reactive 50/50 NR/EPDM blends cured with TBBS was observed when compared with the simple blend. For the N‐550‐filled blends at the blend ratios of 70/30 and 50/50, the reactive‐filled blends prepared under the optimized preheating times demonstrated superior tensile strength and elongation at break over the simple blends. The improved crosslink and/or filler distribution between the two rubber phases in the reactive blends accounts for such improvement in their mechanical properties. This is shown in the scanning electron micrographs of the tensile fractured surfaces of the reactive blends, which indicate a more homogeneous blend. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

4.
Rubber–rubber blends are used widely in industry, for example, in tire manufacture. It is often difficult to characterize interfaces in such rubber–rubber blends quantitatively because of the similarity in the chemical structure of the component rubbers. Here, a new method was suggested for the measurement of the weight fraction of the interface in rubber–rubber blends using modulated‐temperature differential scanning calorimetry (M‐TDSC). Quantitative analysis using the differential of the heat capacity, dCp/dT, versus the temperature signal from M‐TDSC allows the weight fraction of the interface to be calculated. As examples, polybutadiene rubber (BR)–natural rubber (NR), BR–styrene‐co‐butadiene rubber (SBR), SBR–NR, and nitrile rubber (NBR)–NR blend systems were analyzed. The interfacial content in these blends was obtained. SBR is partially miscible with BR. The cis‐structure content in BR has an obvious effect on the extent of mixing in the SBR–BR blends. With increasing styrene content in the SBR in the SBR–BR blends, the interface content decreases. NR is partially miscible with both BR and SBR. The NBR used in this research is essentially immiscible with NR. The maximum amount of interface was found to be at the 50:50 blend composition in BR–NR, SBR–BR, and SBR–NR systems. Quantitative analysis of interfaces in these blend systems is reported for the first time. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 76: 1791–1798, 2000  相似文献   

5.
This study evaluates the effects of ethylene‐propylene‐diene‐monomer grafted maleic anhydride (EPDM‐g‐MAH) and internal mixer melt compounding processing parameters on the properties of natural rubber/ethylene‐propylene‐diene rubber (NR/EPDM) blends. Using Response Surface Methodology (RSM) of 25 two‐level fractional factorial, we studied the effects of NR/EPDM ratio, mixing temperature, Banbury rotor speed, mixing period, and EPDM‐g‐MAH contents in NR/EPDM blends. The study found that the presence of EPDM‐g‐MAH in NR/EPDM blends had a predominant role as a compatibilizing agent, which affected the processability and properties of the final material. We also determined the model fitting with constant determination, R2 of 99.60% for tensile strength (TS) response with a suggested combination of mixing process input parameters. The reproducibility of the proposed mixing strategy was then confirmed through model validation with a minor deviation at +2.303% and higher desirability of 0.960. This study is essential in providing a process design reference for NR/EPDM blends preparation by melt‐blending and the role of a compatibilizer from the systematic Design of Experiment (DOE) approach. The experimental findings were further supported with swelling and cross‐link density measurements, differential scanning calorimetry analysis, and observation of fracture morphology using a scanning electron microscope. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42199.  相似文献   

6.
The viscoelastic properties of the blends of chloroprene rubber (CR) with ethylene–propylene–diene monomer rubber (EPDM), polybutadiene rubber (BR), and natural rubber (NR) at different temperature were studied using rubber processing analyzer (RPA). Mooney viscosities of compounds were measured and tight milling and sheeting appearance were observed on a two‐roll mill. The results showed that Mooney viscosities and the elastic modulus of the blends decreased with the increase of the temperature from 60 to 100°C. And the decreasing trends of pure CR, pure NR, and CR/NR blend compounds were more prominent than that of pure EPDM, pure BR, CR/EPDM, and CR/BR blend compounds. For CR/EPDM blend compounds, the decreasing trend became slower with the increase of EPDM ratio in the blend. Compared with pure CR, pure NR and CR/NR blend compounds, pure EPDM, pure BR compounds, and the blend compounds of CR/EPDM and CR/BR showed less sensibility to temperature and they were less sticky to the metal surface of rolls and could be kept in elastic state at higher temperature, easy to be milled up and sheeted. At the same blend ratio and temperature, the property of tight milling of the blends decreased in the sequence of CR/EPDM, CR/BR, and CR/NR. With the increase of EPDM, BR, or NR ratio in CR blends, its property of tight milling was improved. POLYM. COMPOS., 28:667–673, 2007. © 2007 Society of Plastics Engineers  相似文献   

7.
Migration behaviors of antiozonants in carbon black‐filled rubber vulcanizates with different rubber compositions of natural rubber (NR), styrene–butadiene rubber (SBR), and butadiene rubber (BR) were studied at constant temperatures of 40–100°C and outdoors. Three single rubber‐based vulcanizates, three biblends, and three triblends were used. N‐Phenyl‐N′‐isopropyl‐p‐phenylenediamine (IPPD) and N‐phenyl‐N′‐(1,3‐dimethylbutyl)‐p‐phenylenediamine (HPPD) were employed as antiozonants. Migration rates of the antiozonants became faster with increasing the temperature. The order of the migration rates in the single rubber‐based vulcanizates was BR > NR > SBR. The migration rates in the vulcanizates containing SBR, on the whole, increased with decreasing the SBR content, while those in the vulcanizates containing BR decreased with decreasing the BR content. Difference in the migration behaviors of the antiozonants depending on the rubber composition was explained both by the intermolecular interactions of the antiozonants with the matrix and by interface formed between dissimilar rubbers in the blends. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 81: 237–242, 2001  相似文献   

8.
Systematic electrical and mechanical studies were carried out on natural rubber (NR) blended with different types of synthetic rubber such as styrene‐butadiene rubber (SBR), polybutadiene rubber (BR), and ethylene‐propylene‐diene monomer (EPDM) as nonpolar rubbers and nitrile‐butadiene rubber (NBR) and chloroprene rubber (CR) as polar rubbers. The NR/SBR, NR/BR, NR/EPDM, NR/NBR, and NR/CR blends were prepared with different ratios (100/0, 75/25, 50/50, 25/75, and 0/100). The permittivity (ε′) and dielectric loss (ε″) of these blends were measured over a wide range of frequencies (100 Hz–100 kHz) and at room temperature (∼ 27°C). The compatibility results obtained from the dielectric measurements were comparable with those obtained from the calculation of the heat of mixing. These results were confirmed by scanning electron microscopy and showed that NR/SBR and NR/BR blends were compatible while NR/EPDM, NR/NBR, and NR/CR blends were incompatible. To overcome the problem of phase separation (incompatibility) between NR and EPDM, NBR, or CR, a third component such as SBR or poly(vinyl chloride) (PVC) was added as a compatibilizing agent to these blends. The experimental data of dielectric and mechanical measurements showed that the addition of either SBR or PVC could improve the compatibility of such blends to some extent. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 79: 60–71, 2001  相似文献   

9.
The graft copolymerization of 2‐dimethylamino ethylmethacrylate (DMAEMA) onto ethylene propylene diene mononer rubber (EPDM) was carried out in toluene via solution polymerization technique at 70°C, using dibenzoyl peroxide as initiator. The synthesized EPDM rubber grafted with poly[DMAEMA] (EPDM‐g‐PDMAEMA) was characterized with 1H‐NMR spectroscopy, gel permeation chromatography (GPC), differential scanning calorimetry (DSC), and thermal gravimetric analysis (TGA). The EPDM‐g‐PDMAEMA was incorporated into EPDM/butadiene acrylonitrile rubber (EPDM/NBR) blend with different blend ratios, where the homogeneity of such blends was examined with scanning electron microscopy and DSC. The scanning electron micrographs illustrate improvement of the morphology of EPDM/NBR rubber blends as a result of incorporation of EPDM‐g‐PDMAEMA onto that blend. The DSC trace exhibits one glass transition temperature (Tg) for EPDM/NBR blend containing EPDM‐g‐PDMAEMA, indicating improvement of homogeneity. The physico‐mechanical properties after and before accelerated thermal aging of the homogeneous, and inhomogeneous EPDM/NBR vulcanizates with different blend ratios were investigated. The physico‐mechanical properties of all blend vulcanizates were improved after and before accelerated thermal aging, in presence of EPDM‐g‐PDMAEMA. Of all blend ratios under investigation EPDM/NBR (75/25) blend possesses the best physico‐mechanical properties together with the best (least) swelling (%) in brake fluid. Swelling behavior of the rubber blend vulcanizates in motor oil and toluene was also investigated. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

10.
The effects of epoxidized natural rubber (ENR‐50) and processing parameters on the properties of natural rubber/ethylene–propylene–diene rubber (NR/EPDM; 70 : 30 phr) blends were studied. The compounds were prepared by melt compounding method. Using response surface methodology of two‐level full factorial, the effects of ENR‐50 contents (?1 : 5 phr; +1 : 10 phr), mixing temperature (?1 : 50°C; +1 : 110°C), rotor speed (?1 : 40 rpm; +1 : 80 rpm), and mixing time (?1 : 5 min; +1 : 9 min) in NR/EPDM blends were evaluated. Cure characteristics and tensile properties were selected as the responses. The significance of factors and its interaction was analyzed using ANOVA and the model's ability to represent the system was confirmed using the constant of determination, R2 with values above 0.90. It was found that the presence of ENR‐50 has the predominant role on the properties of NR/EPDM blends. The addition of ENR‐50 significantly improved cure characteristics and tensile strength up to 5.12% and 6.48% compared to neat NR/EPDM blends, respectively. These findings were further supported by swell measurement, differential scanning calorimetry, and scanning electron microscopy. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40713.  相似文献   

11.
Cure incompatibility in NR/BR/EPDM blends is a crucial problem, affecting blend properties. In a previous study, it was demonstrated that the mechanical properties of such blends can be significantly improved by utilizing a reactive processing technique, in which a pretreated EPDM is first prepared by incorporating all compounding ingredients in the EPDM and subsequent preheating, prior to crossblending with premasticated NR/BR. In the present article, the pretreated EPDM‐moieties are prepared using two different accelerators, N‐cyclohexyl‐2‐benzothiazole sulfenamide (CBS) and 6‐nitro MBTS. The latter was synthesized and applied for the purpose of IR characterization. The infrared (IR) spectra of the pretreated, extracted EPDM demonstrate absorption peaks associated with the IR absorption of the functional groups in the accelerator fragments, attached to the EPDM. NR/BR/EPDM (35/35/30) ternary blends are prepared by reactive mixing of the pretreated EPDM with CBS fragments attached with premasticated NR/BR on a two‐roll mill. Their blend morphological features are studied using the atomic force microscopy (AFM) and transmission electron microscopy (TEM) microscopic techniques, in comparison with those of blends prepared by a conventional straight mixing method. Both the tapping mode AFM phase images and TEM micrographs clearly show that reactive mixing leads to more homogeneous blends. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 103:2547–2554, 2007  相似文献   

12.
This work deals with the synthesis of aromatic polyester (AP) from polyarylate [Bisphenol A (BPA)/dimethyl terephalate (DMT)/ethylene glycol (EG)] and maleic anhydride (MA) in presence of dibutyl tin oxide (DBTO) as a catalyst. Blends were prepared from candidated AP (10–30 phr) with different types of rubber [natural rubber (NR), acrylonitrile butadiene rubber (NBR), styrene butadiene rubber (SBR) and ethylene‐propylene‐diene monomer (EPDM)]. The obtained blends were subjected to physicomechanical measurements to evaluate their properties as efficient blends for economic industrial applications. In case of AP blended with rubber, better properties were obtained than that of rubber vulcanizates. The fatigue life values decreases by increasing the AP contents for all types of the tested blends. The equilibrium swelling (%) for the prepared blends exhibits different behavior in solvents like toluene and motor oil. The addition of N‐isopropyl‐N′‐phenyl‐p‐phenylene diamine (IPPD), as antioxidant, affects the properties of all the prepared products. These properties were in consequent with the data of the initial shear modulus, which is calculated from the Mooney‐Rivlin equation and the percentage of the equilibrium swelling. Scanning electron microscope (SEM) was used to study the morphological structure; the SEM results show the changes in surface of the rubber before and after being blended with AP. The investigated blends are considered a new trend in giving products with variable physicomechanical characteristics. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

13.
Natural rubber/cis‐1,4‐polybutadiene (NR/BR) blends with two types of layered nanofillers, montmorillonite (MMT) and layered double hydroxide (LDH), both in pristine and organically modified forms are produced and investigated. Faster curing is found for all the NR/BR blends, except for the one containing the unmodified MMT. This effect can be attributed to the groups placed in the interlayer regions of the clays; more precisely to ammonium groups for the organo‐MMTs and to ? OH groups for LDHs. Mechanical properties and thermal stability of rubber compounds are investigated. It has been demonstrated that the performance of the final nanocomposite is significantly affected by the kind of clay. Particularly, the organo‐MMTs provoke an improvement of the mechanical properties and increase the thermal stability of about 4–5° C in respect to the pure NR/BR matrix. On the contrary, the poor compatibility of unmodified MMT and of LDH clays with the rubber blend is evident and no enhancement on the composite performance has been observed. POLYM. ENG. SCI., 2013. © Society of Plastics Engineers  相似文献   

14.
Comparative studies of the thermogravimetric analysis and thermo‐oxidative aging of (natural rubber)/(waste ethylene‐propylene‐diene monomer terpolymer) (NR/W‐EPDM) and (natural rubber)/(ethylene‐propylene‐diene monomer terpolymer) (NR/EPDM) blends were carried out. The blends were prepared at five different blend ratios (90/10, 80/20, 70/30, 60/40, and 50/50) on a two‐roll mill. As the pure EPDM or W‐EPDM content in the blends increased, their thermal stability also increased. The thermo‐oxidative aging of these blends was done at 100°C for 48 h. Afterwards, the NR/EPDM blends exhibited better retention of properties than the NR/W‐EPDM blends. Crosslink density measurements of the blends after thermal aging indicated that higher crosslink density was obtained from a higher content of EPDM or W‐EPDM, a result which might be due to the high rate of radical termination leading to crosslinks in the bulk of the polymer. J. VINYL ADDIT. TECHNOL., 20:99–107, 2014. © 2014 Society of Plastics Engineers  相似文献   

15.
APPS has been used to modify EPDM in order to solve the cure incompatibility and heterogeneous filler distribution of NR/BR/EPDM blends for tire sidewall applications. The physical properties of the NR/BR/APPS‐EPDM blends are compared with an NR/BR/EPDM blend and a conventional NR/BR tire sidewall. It is demonstrated that the application of APPS‐EPDM leads to a significant improvement of the tensile properties, tear strength, and fatigue properties. The properties of the NR/BR/APPS‐EPDM blends are equivalent or even superior to those of conventional NR/BR tire sidewall compounds. The dynamic viscoelastic properties of the NR/BR/APPS‐EPDM blends are not quite comparable with the conventional NR/BR sidewall blend, but still greatly improved, compared to using virgin EPDM.

  相似文献   


16.
The distribution of modified and unmodified nanoclays inside the rubber phases of immiscible rubber–rubber blends composed of nonpolar–polar natural rubber (NR)/epoxidized natural rubber (ENR) and nonpolar–nonpolar NR/polybutadiene rubber (BR) was investigated for the first time. The distribution of clays at various loadings in the blends was calculated from the viscoelastic properties of the blends. For example, in the 50 : 50 NR/ENR blend, 42% Cloisite 30B migrated to the NR phase, and 58% went to the ENR phase. However, in the same blend, only 7% Cloisite Na+ was found in the NR phase, and 93% was found in the ENR phase. Again, in the 50 : 50 NR/BR blends, the NR phase contained 85% Cloisite 30B, whereas 55% Cloisite Na+ migrated to the NR phase. All these observations were explained with the help of viscosity, X‐ray diffraction, and morphology analyses. The effect of the distribution of the clay on the mechanical properties was also discussed. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

17.
A new conducting blend from natural rubber (NR), low‐density polyethylene (PE), and Bi‐based superconductor (BSCCO) nanoparticles was successfully formulated. Blends were prepared by means of an open two‐roll mill for five ratios (100/0, 90/10, 80/20, 70/30, and 60/40 NR/LDPE). The microstructures of the blends were examined in terms of scanning electron microscopy (SEM), bound rubber (BR), cross‐linking density (CLD), and Mooney viscosity (M100). The mechanical properties like hardness (H) shore A, tensile strength (TS), and elongation at break (EB) of the blends were studied. The applicability of the blends as double thermistors, i.e., positive and negative coefficient of resistivity (PTCR/NTCR), was examined. The applicability of the blend for antistatic charge dissipation was also tested. Finally, electromagnetic interference response of conducting NR/PE‐filled BSCCO in the frequency range 1–12 GHz has been studied. Shielding effectiveness of the conducting blends in the microwave range 8–12 GHz shows an attenuation of 44–60 dB for PE ≤10 wt%. POLYM. ENG. SCI., 2009. © 2009 Society of Plastics Engineers  相似文献   

18.
It has been shown that the mechanical properties of NR/BR/EPDM blends can be improved by using APPS as a modifier. In this paper, it is demonstrated that modification of EPDM with APPS takes place and saturation occurs when the APPS amount reaches 5 wt.‐%. It is shown that the rubber/carbon black affinity improves by using APPS‐grafted EPDM in the blend. TEM and STEM images clearly show that the NR/BR/APPS‐EPDM blend contains a significantly higher content of homogeneous rubber phase than the unmodified NR/BR/EPDM blend. The much better distribution of the carbon black in the APPS‐EPDM phase is considered the main reason for the improvement in properties of the blend.

  相似文献   


19.
Polybutadiene rubber (BR) was blended with ethylene‐propylene diene (EPDM) rubber on rubber mill with different weight ratios (100/0‐70/30‐50/50‐30/70‐0‐100), then application of gamma rays at different irradiation doses from 25 up to 150 kGy to induce crosslinking. Mechanical, physio‐chemical, and characterization of prepared blends are to be followed up as functions of the blend composition and the radiation absorbed dose. Mechanical properties like tensile strength (TS), elongation at break (Eb), and tensile modulus (M100) were increased with increasing content of EPDM in blend composition. On the other hand, TS and M100 increased with radiation dose, whereas the value of Eb decreased with radiation dose. Physico‐chemical properties like gel fraction and volume fraction of rubber in swollen gel (Vr) increased with increasing the content of EPDM rubber in blend formulation while the swelling ratio and soluble fraction decreased with increasing content of EPDM. On the other hand, the Vr increased with radiation dose, whereas the values of soluble fraction and selling ratio (Q) decreased with radiation dose. Fourier transforms‐infrared measurements confirmed the compatibility between BR and EPDM rubber moieties in the blend matrix. J. VINYL ADDIT. TECHNOL., 25:E64–E72, 2019. © 2018 Society of Plastics Engineers  相似文献   

20.
Solvent dependent changes in the compatibility behavior of Polychloroprene/Ethylene–propylene–diene terpolymer blends (CR/EPDM) have been investigated using dilute solution viscometry and solvent permeability analysis. To predict the compatibility of rubber blends of different compositions in solvents of different cohesive energy densities, Huggins interaction parameter (ΔB), hydrodynamic interaction (Δη) and Sun's parameter (α) were evaluated from the analysis of the specific and reduced viscosity data of two and three‐component polymer solutions. Miscibility criteria were not satisfied for CR/EPDM blends over the entire composition range in toluene, xylene, and carbon tetrachloride (CCl4), however, a narrow miscibility domain was observed in chloroform (CHCl3) for CR/EPDM/CHCl3 system. These results were further corroborated with the analysis of heat of mixing (ΔHm) and polymer–polymer interaction parameter (χ12), for all rubber blend compositions. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号