首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This work addresses the finite‐time optimal control problem for a class of interconnected nonlinear systems with powers of positive odd rational numbers. A series of homogeneous controllers, which are capable of guaranteeing the local finite‐time stability of the closed‐loop systems, are first developed using the adding one power integrator method and backstepping technique. Then, the nested saturation controllers are further proposed to achieve global finite‐time stability. Furthermore, the corresponding design parameters are optimized, and thus, an optimal controller is obtained. A numerical simulation example is finally given to illustrate the effectiveness of the proposed control strategy.  相似文献   

2.
Recently, there have been a series of results regarding two time optimal control problems for a class of linear and nonlinear systems ‐ one is to keep the system states within certain bound for the longest time during feedback disruption and the other is to derive the system states to near the origin as fast as possible after feedback recovery, both under bounded control inputs. These are called maximal and minimal time optimal control problems, respectively. In the existing results, a bang‐bang controller has been commonly suggested as the actual implementation of the optimal controller. In this paper, we suggest a modified version of the bang‐bang controller which can also serve as an approximate optimal controller. Our proposed controller provides the (near) optimal performance with (i) possible reduction of a number of switchings; (ii) possible reduction of control input magnitude.  相似文献   

3.
In this brief, we extend the existing results on fault tolerant control via virtual actuator approach to a class of systems with Lipschitz nonlinearities to maintain the closed‐loop stability after actuator faults. This generalization is established by relying on the input‐to‐state stability properties of cascaded systems. The virtual actuator block, placed between faulty plant and nominal controller, generates useful input signals for faulty plant by using output signals of the nominal controller to guarantee the closed‐loop stability in the presence of actuator faults. This design problem is reduced to a matrix inequality that can be turned to an LMI by fixing a variable to a constant value and solving the resulting LMI feasibility problem. The proposed fault tolerant control method is successfully evaluated using a nonlinear system. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

4.
In this contribution, we obtain a nonlinear controller for a class of nonlinear time delay systems, by using the inverse optimality approach. We avoid the solution of the Hamilton Jacobi Bellman type equation and the determination of the Bellman's functional by extending the inverse optimality approach for delay free nonlinear systems to time delay nonlinear systems. This is achieved by combining the Control Lyapunov Function framework and Lyapunov-Krasovskii functionals of complete type. Explicit formulas for an optimal control are obtained. The efficiency of the proposed method is illustrated via experimental results applied to a dehydration process whose model includes a delayed state linear part and a delayed nonlinear part. To give evidence of the good performance of the proposed control law, experimental comparison against an industrial Proportional Integral Derivative controller and optimal linear controller. Additionally experimental robustness tests are presented.  相似文献   

5.
In this paper, we consider a class of constrained discrete time optimal control problems involving general nonlinear dynamics with fixed terminal time. A method to solve the feedback control problem for a class of unconstrained continuous time nonlinear systems has been proposed previously. In that work, the solution is based on synthesizing an approximate suboptimal feedback controller locally in the neighbourhood of a certain nominal optimal trajectory. This paper expands on the same theme by considering problems involving discrete time systems. Taking advantage of the nature of discrete time systems, a further reduction on the computational effort of synthesising the feedback controller is made possible. Also, this paper extends the applicability of the method to constrained systems. For illustration, a numerical example is solved using the proposed method.  相似文献   

6.
In this paper, a nonlinear minimization approach is proposed for multiobjective and structured controls for discrete‐time systems. The problem of finding multiobjective and structured controls for discrete‐time systems is represented as a quadratic matrix inequality problem. It is shown that the problem is reduced to a nonlinear minimization problem that has a concave objective function and linear matrix inequality constraints. An algorithm for the nonlinear minimization problem is proposed, which is easily implemented with existing semidefinite programming algorithms. The validity of the proposed algorithm is illustrated by comparisons with existing methods. In addition, applications of this work are demonstrated via numerical examples. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

7.
This paper is devoted to the problem of computing control laws for the stabilization of continuous‐time linear time‐varying systems. First, a necessary and sufficient condition to assess the stability of a linear time‐varying system based on the norm of the transition matrix computed over a sequence of successive finite‐time intervals is proposed. A link with a stability condition for an equivalent discrete‐time model is also established. Then, 3 approaches for the computation of stabilizing state‐feedback gains are proposed: a continuous‐time technique, ie, directly derived from the stability condition, not suitable for numerical implementation; a method based on the stabilization of the discrete‐time equivalent model along with a transformation to generate the desired continuous‐time gain; and the computation of stabilizing gains for a set of periodic discrete‐time systems. Finally, by adapting one of the existing methods for the stabilization of periodic discrete‐time systems, an algorithm for the computation of a stabilizing state‐feedback continuous‐time gain is proposed. A numerical example illustrates the validity of the technique.  相似文献   

8.
This article designs an adaptive event‐triggered controller to solve the problem of global finite‐time stabilization for a class of uncertain nonlinear systems. By using the symbol function technique, the event‐triggered error is completely compensated, the adaptive technique and the back‐stepping method are simultaneously applied to the controller design, and the new way of designing controller is completed on the basis of fast finite‐time stability theory. Subsequently, taking Lyapunov stability theorem into account, the system stability is proved, and the system is demonstrated by contradiction to be non‐zeno. Finally, giving a simulation example to display the feasibility of this method.  相似文献   

9.
In this paper, we investigate the prespecifiable fixed‐time control problem for a class of uncertain nonlinear systems in strict‐feedback form, where the settling (convergence) time is not only bounded but also user‐assignable in advance. One of the salient features of the proposed method lies in the fact that it makes it possible to achieve any practically allowable settling time by using a simple and effective control parameter selection recipe. Both fixed‐time stabilization and fixed‐time tracking are considered for uncertain strict‐feedback systems. Firstly, by adding exponential state feedback and using fractional power integration as Lyapunov function candidate, a global stabilizing control strategy is developed. It is proved that all the system states converge to zero within prespecified fixed‐time with continuous and bounded control action. Secondly, under more general uncertain nonlinearities and external disturbances, an adaptive fixed‐time controller is derived such that the tracking error converges to a small neighborhood of zero within preassigned time. Theoretical results are also illustrated and supported by simulation studies.  相似文献   

10.
In this paper, we propose a real‐time algorithm for nonlinear receding horizon control using multiple shooting and the continuation/GMRES method. Multiple shooting is expected to improve numerical accuracy in calculations for solving boundary value problems. The continuation method is combined with a Krylov subspace method, GMRES, to update unknown quantities by solving a linear equation. At the same time, we apply condensing, which reduces the size of the linear equation, to speed up numerical calculations. A numerical example shows that both numerical accuracy and computational speed improve using the proposed algorithm by combining multiple shooting with condensing. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

11.
This paper is concerned with the simultaneous robust control and fault detection problem for continuous‐time switched systems subject to a dwell time constraint. To meet the control and detection objectives under the constraint, the controller/detectors matching different time intervals are first constructed in an output feedback framework. A state‐dependent switching law that obeys the dwell time constraint is then designed such that the closed‐loop switched system is asymptotically stable and also with the robust and detection performance. Further, the proposed switching law is dependent only on the partial measurable states of the closed‐loop system, which is applicable when the states of system mode are fully unavailable. Thus, our result extends the existing ones in state‐dependent switching and state‐feedback frameworks. Finally, a numerical example is given to illustrate the effectiveness of the proposed method. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

12.
This paper presents an approach to discrete‐time robust H control for a class of nonlinear uncertain systems on the basis of the use of Sum Quadratic Constraints. The approach involves controllers, which include copies of the system nonlinearities in the controller. The nonlinearities being considered are those that satisfy a certain global Lipschitz condition. The linear part of the controller is synthesized using linear robust H control theory, and this leads to a nonlinear controller, which gives an upper bound on the attainable disturbance attenuation level. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

13.
This paper considers the use of matrix models and the robustness of a gradient‐based iterative learning control (ILC) algorithm using both fixed learning gains and nonlinear data‐dependent gains derived from parameter optimization. The philosophy of the paper is to ensure monotonic convergence with respect to the mean‐square value of the error time series. The paper provides a complete and rigorous analysis for the systematic use of the well‐known matrix models in ILC. Matrix models provide necessary and sufficient conditions for robust monotonic convergence. They also permit the construction of accurate sufficient frequency domain conditions for robust monotonic convergence on finite time intervals for both causal and non‐causal controller dynamics. The results are compared with recently published results for robust inverse‐model‐based ILC algorithms and it is seen that the algorithm has the potential to improve the robustness to high‐frequency modelling errors, provided that resonances within the plant bandwidth have been suppressed by feedback or series compensation. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

14.
In this paper, an adaptive backstepping tracking control scheme is proposed for a class of nonlinear state time‐varying delay systems, which are subject to parametric uncertainties and external disturbances. The bounds of the time delays and their derivatives are assumed to be unknown. Tuning functions method is exploited to construct the control law and adaptive laws. Unknown time‐varying delays are compensated by using appropriate Lyapunov–Krasovskii functional. It is shown that the proposed controller can guarantee the boundedness of all the closed‐loop signals. The tracking performance can be adjusted by choosing suitable design parameters. At the end, a simulation example is provided to illustrate the effectiveness of the design procedure. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

15.
This paper focuses on the analysis and the design of event‐triggering scheme for discrete‐time systems. Both static event‐triggering scheme (SETS) and adaptive event‐triggering scheme (AETS) are presented for discrete‐time nonlinear and linear systems. What makes AETS different from SETS is that an auxiliary dynamic variable satisfying a certain difference equation is incorporated into the event‐triggering condition. The sufficient conditions of asymptotic stability of the closed‐loop event‐triggered control systems under both two triggering schemes are given. Especially, for the linear systems case, the minimum time between two consecutive control updates is discussed. Also, the quantitative relation among the system parameters, the preselected triggering parameters in AETS, and a quadratic performance index are established. Finally, the effectiveness and respective advantage of the proposed event‐triggering schemes are illustrated on a practical example. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

16.
This article addresses the problem of finite‐time stability (FTS) and finite‐time contractive stability (FTCS) for switched nonlinear time‐delay systems (SNTDSs). By virtues of the Lyapunov‐Razumikhin method, Lyapunov functionals approach, and the comparison principle technique, we obtain some improved Razumikhin‐type theorems that verify FTS and FTCS property for SNTDSs. Moreover, our results allow the estimate of the upper bound of the derivatives for Lyapunov functions to be mode dependent functions which can be positive and negative. Meanwhile, the proposed results also improve the related existing results on the same topic by removing some restrictive conditions. Finally, two examples are presented to verify the effectiveness of our methods.  相似文献   

17.
This article is concerned with the dissipative control problem for discrete‐time nonlinear Markovian jump systems subject to both discrete and distributed time‐delays. The purpose is to design a state feedback controller that is capable of guaranteeing the required closed‐loop stability and dissipativity performances simultaneously. By resorting to Lyapunov functional methodology and completing square technique, sufficient conditions are established for the existence of the desired state feedback controller in terms of certain Hamilton‐Jacobi inequalities (HJIs). Within the provided framework, the required controller parameters can be obtained by solving the corresponding HJIs. Finally, two numerical simulation examples are presented to demonstrate the correctness and effectiveness of the developed control paradigm.  相似文献   

18.
In this work, we present a novel adaptive finite‐time fault‐tolerant control algorithm for a class of multi‐input multi‐output nonlinear systems with constraint requirement on the system output tracking error. Both parametric and nonparametric system uncertainties can be effectively dealt with by the proposed control scheme. The gain functions of the nonlinear systems under discussion, especially the control input gain function, can be not fully known and state‐dependent. Backstepping design with a tan‐type barrier Lyapunov function and a new structure of stabilizing function is presented. We show that under the proposed control scheme, finite‐time convergence of the output tracking error into a small set around zero is guaranteed, while the constraint requirement on the system output tracking error will not be violated during operation. An illustrative example on a robot manipulator model is presented in the end to further demonstrate the effectiveness of the proposed control scheme. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

19.
20.
This article is concerned with the global stabilization problem of a family of feedforward nonlinear time‐delay systems whose linearized system consists of multiple distinct oscillators. To fully utilize the delayed information and maintain the state decoupling property in the controller design, the considered nonlinear feedforward system is first transformed into a new system which contains time delays in both its input and states based on a novel model transformation containing time delays, and then the stabilizing saturated controller for the transformed system is designed based on the recursive design method. Meanwhile, explicit stability conditions are also provided. When the linearized system is a cascade of multiple oscillators and multiple integrators, a modified saturated feedback control utilizing not only the current state but also the delayed state is also established for the corresponding global stabilization problem. Two examples, including a practical one, are given to show the effectiveness and superiority of the proposed approaches.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号