首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Vertically aligned ZnO nanonails and nanopencils are synthesized on a silicon substrate using a modified thermal‐evaporation process, without using a catalyst or predeposited buffer layers. An adiabatic layer is used to provide an abrupt temperature decrease and high gas concentration for the nanostructures growth. The structure and morphology of the as‐synthesized ZnO nanonails and nanopencils are characterized using X‐ray diffraction, and scanning and transmission electron microscopies. Raman and photoluminescence properties are also investigated at room temperature. Field‐emission characterization shows that the turn‐on fields for the vertically aligned ZnO nanonails and nanopencils are 7.9 and 7.2 V μm–1, respectively.  相似文献   

2.
Needle‐like ZnO nanowires with high density are grown uniformly and vertically over an entire Ga‐doped conductive ZnO film at 550 °C. The nanowires are grown preferentially in the c‐axis direction. The X‐ray diffraction (XRD) θ‐scan curve shows a full width at half maximum (FWHM) value of 2°. This indicates that the c‐axes of the nanorods are along the normal direction of the substrate surface. The investigation using high‐resolution transmission electron microscopy (HRTEM) confirmed that each nanowire is a single crystal. A room‐temperature photoluminescence (PL) spectrum of the wires consists of a strong and sharp UV emission band at 380 nm and a weak and broad green–yellow band. It reveals a low concentration of oxygen vacancies in the ZnO nanowires and their high optical quality. Field electron emission from the wires was also investigated. The turn‐on field for the ZnO nanowires was found to be about 18 V μm–1 at a current density of 0.01 μA cm–2. The emission current density from the ZnO nanowires reached 0.1 mA cm–2 at a bias field of 24 V μm–1.  相似文献   

3.
氧化钨纳米线由于具有长径比较大、导电性好、阈值电场较低、可承受的电流较高等优点,因此在场致电子发射器件中受到人们的广泛关注。但是在氧化钨纳米结构研究发展的过程中,出现了一些技术难题,比如制备温度高(>800℃),制备的氧化钨通常混合多种化学相而导致物性不均匀等,所以束缚了氧化钨纳米线在场发射领域的快速发展。本文采用磁控溅射技术结合化学气相沉积技术在500℃下分别实现了高纯相的WO2和WO3纳米线阵列的定域生长。场发射特性研究结果表明:所制备的WO3纳米线阵列的开启电场低至0.65MV/m,阈值电场约为2.9MV/m,最大电流密度达到18.3A/cm2;WO2纳米线阵列的开启电场低至0.8MV/m,阈值电场为2.46MV/m,最大电流密度达到12.1mA/cm2。这表明在低温下制备的氧化钨纳米线阵列在场致电子发射领域具有非常广阔的应用前景。  相似文献   

4.
Growth of aligned and uniform α‐Fe2O3 nanowire (NW) arrays has been achieved by a vapor–solid process. The experimental conditions, such as type of substrate, local growth and geometrical environment, gas‐flow rate, and growth temperature, under which the high density α‐Fe2O3 NW arrays can be grown by a vapor–solid route via the tip‐growth mechanism have been systematically investigated. The density of the α‐Fe2O3 NWs can be enhanced by increasing the concentration of Ni atoms inside the alloy substrate. The synthesized temperature can be as low as 400 °C. Fe3O4 NWs can be produced by converting α‐Fe2O3 NWs in a reducing atmosphere at 450 °C. The transformation of phase and structure have been observed by in situ transmission electron microscopy. The magnetic and field‐emission properties of the NWs indicate their potential applications in nanodevices.  相似文献   

5.
Owing to the development of electronic devices moving toward high power density, miniaturization, and multifunction, research on thermal interface materials (TIMs) is become increasingly significant. Graphene is regarded as the most promising thermal management material owing to its ultrahigh in‐plane thermal conductivity. However, the fabrication of high‐quality vertical graphene (VG) arrays and their utilization in TIMs still remains a big challenge. In this study, a rational approach is developed for growing VG arrays using an alcohol‐based electric‐field‐assisted plasma enhanced chemical vapor deposition. Alcohol‐based carbon sources are used to produce hydroxyl radicals to increase the growth rate and reduce the formation of defects. A vertical electric field is used to align the graphene sheets. Using this method, high‐quality and vertically aligned graphene with a height of 18.7 µm is obtained under an electric field of 30 V cm?1. TIMs constructed with the VG arrays exhibit a high vertical thermal conductivity of 53.5 W m?1 K?1 and a low contact thermal resistance of 11.8 K mm2 W?1, indicating their significant potential for applications in heat dissipation technologies.  相似文献   

6.
Homogenous crystallization in solution, in the absence of external influences, is expected to lead to growth that is symmetric at least in two opposite facets. Such was not the case when we attempted to synthesize ZnO nanostructures by employing a solvothermal technique. The reaction product, instead, consisted of bullet‐shaped tiny single crystals with an abrupt hexagonal base and a sharp tip. A careful analysis of the product and the intermediate states of the synthesis reveals that one of the reaction intermediates with sheet‐like morphology acts as a self‐sacrificing template and induces such unexpected and novel growth. The synthesis was further extended to dope the nanobullets with nitrogen as previous studies showed this can induce p‐type behavior in ZnO, which is technologically complementary to the naturally occurring n‐type ZnO. Herein, a soft‐chemical approach is used for the first time for this purpose, which is otherwise accomplished with high‐temperature techniques. Cathodoluminesce (CL) investigations reveal stable optical behavior within a pure nanobullet. On the other hand, the CL spectra derived from the surfaces and the cores of the doped samples are different, pointing at a N‐rich core. Finally, even though N‐doped ZnO is known to have high electrical conductivity, the study now demonstrates that the field‐emission properties of ZnO can also be greatly enhanced by means of N doping.  相似文献   

7.
Polymer dielectrics with intrinsic mechanical flexibility are considered as a key component for flexible organic field‐effect transistors (OFETs). However, it remains a challenge to fabricate highly aligned organic semiconductor single crystal (OSSC) arrays on the polymer dielectrics. Herein, for the first time, a facile and universal strategy, polar surface‐confined crystallization (PSCC), is proposed to grow highly aligned OSSC arrays on poly(4‐vinylphenol) (PVP) dielectric layer. The surface polarity of PVP is altered periodically with oxygen‐plasma treatment, enabling the preferential nucleation of organic crystals on the strong‐polarity regions. Moreover, a geometrical confinement effect of the patterned regions can also prevent multiple nucleation and misaligned molecular packing, enabling the highly aligned growth of OSSC arrays with uniform morphology and unitary crystallographic orientation. Using 2,7‐dioctyl[1]benzothieno[3,2‐b]benzothiophene (C8‐BTBT) as an example, highly aligned C8‐BTBT single crystal arrays with uniform molecular packing and crystal orientation are successfully fabricated on the PVP layer, which can guarantee their uniform electrical properties. OFETs made from the C8‐BTBT single crystal arrays on flexible substrates exhibit a mobility as high as 2.25 cm2 V?1 s?1, which has surpassed the C8‐BTBT polycrystalline film‐based flexible devices. This work paves the way toward the fabrication of highly aligned OSSCs on polymer dielectrics for high‐performance, flexible organic devices.  相似文献   

8.
A large amount of one‐dimensional (1D) Ce‐doped ZnO nanostructures with different morphologies has been successfully synthesized by annealing a polymeric precursor at various temperatures. The evolution of the morphologies and microstructures was investigated by field‐emission scanning electron microscopy (FE‐SEM), transmission electron microscopy (TEM), and high‐resolution TEM (HRTEM). The results show that the morphologies vary drastically with increasing synthesis temperature and the photoluminescence (PL) of the products depends on both the synthesis and measurement temperatures. The CeO layer forms first and becomes a catalytic center for the ZnO growth. At a synthesis temperature lower than the boiling point of Zn, Zn and O atoms can stack epitaxially along the CeO catalytic layer and form a bicrystal nanobelt‐like structure with a trapezoid‐like end and a concave growth fault center. At a synthesis temperature higher than the boiling point of Zn, however, nanowires with an incommensurately modulated superstructure are obtained due to the high reaction rate and the formation of a periodic separation of the CeO layer. As for the room‐temperature PL of ZnO, the incorporation of donor Ce leads to the disappearance of the green band and the appearance of a purplish‐blue emission peak, whose position shifts towards the red and whose intensity decreases with increasing synthesis temperature. Analysis of this temperature‐dependent luminescence indicates that the purplish‐blue emission of nanobelts prepared at 850 °C originates from a donor‐bound exciton emission, and, contrary to the nanowires, it undergoes a change from an emission of the electron–hole plasma (EHP) to an emission of the donor‐bound exciton with decreasing measurement temperature.  相似文献   

9.
High‐quality, uniform one‐dimensional CdS micro/nanostructures with different morphologies—microrods, sub‐microwires and nanotips—are fabricated through an easy and effective thermal evaporation process. Their structural, cathodoluminescence and field‐emission properties are systematically investigated. Microrods and nanotips exhibit sharp near‐band‐edge emission and broad deep‐level emission, whereas sub‐microwires show only the deep‐level emission. A significant decrease in a deep‐level/near‐band‐edge intensity ratio is observed along a tapered nanotip towards a smaller diameter part. This behavior is understood by consideration of defect concentrations in the nanotips, as analyzed with high‐resolution transmission electron microscopy. Field‐emission measurements show that the nanotips possess the best field‐emission characteristics among all 1D CdS nanostructures reported to date, with a relatively low turn‐on field of 5.28 V µm?1 and the highest field‐enhancement factor of 4 819. The field‐enhancement factor, turn‐on and threshold fields are discussed related to structure morphology and vacuum gap variations under emission.  相似文献   

10.
A novel organometallic synthetic method has been developed for the preparation of crystalline ZnO nanoparticles of controlled size and shape. Isotropic nanoparticles with a mean size between 3 and 6 nm and nanorods with a mean diameter of 3–4 nm and length up to 120 nm have been obtained in this way. This synthetic method takes advantage of the exothermic reaction of the precursor Zn(c‐C6H11)2 ( 1 ) toward moisture and air and involves the presence of long‐alkyl‐chain amines as stabilizing ligands. The influence of the different experimental parameters (concentration, solvent, nature of the ligand, time, and temperature) on the size and shape of the ZnO nanoparticles has been studied, together with the mechanism of their formation, by NMR spectroscopy, transmission electron microscopy, and X‐ray diffraction techniques. The nanoparticles prepared in this way can be dissolved in most of the common organic solvents, forming colloidal solutions. The surface state of the nanoparticles as well as the possibility of forming luminescent solutions from which regular monolayers can be deposited are also reported.  相似文献   

11.
The position‐controlled growth and structural and optical characteristics of ZnO nanotubes and their coaxial heterostructures are reported. To control both the shape and position of ZnO nanotubes, hole‐patterned SiO2 growth‐mask layers on Si(111) substrates with GaN/AlN intermediate layers using conventional lithography are prepared. ZnO nanotubes are grown only on the hole patterns at 600 °C by catalyst‐free metal–organic vapor‐phase epitaxy. Furthermore, the position‐controlled nanotube growth method allows the fabrication of artificial arrays of ZnO‐based coaxial nanotube single‐quantum‐well structures (SQWs) on Si substrates. In situ heteroepitaxial growth of ZnO and Zn0.8Mg0.2O layers along the circumference of the ZnO nanotube enable an artificial formation of quantum‐well arrays in a designed fashion. The structural and optical characteristics of the ZnO nanotubes and SQW arrays are also investigated using synchrotron radiation X‐ray diffractometry and photoluminescence and cathodoluminescence spectroscopy.  相似文献   

12.
13.
Uniform SnO2 nanorod arrays have been deposited at low temperature by plasma‐enhanced chemical vapor deposition (PECVD). ZnO surface modification is used to improve the selectivity of the SnO2 nanorod sensor to H2 gas. The ZnO‐modified SnO2 nanorod sensor shows a normal n‐type response to 100 ppm CO, NH3, and CH4 reducing gas whereas it exhibits concentration‐dependent n–p–n transitions for its sensing response to H2 gas. This abnormal sensing behavior can be explained by the formation of n‐ZnO/p‐Zn‐O‐Sn/n‐SnO2 heterojunction structures. The gas sensors can be used in highly selective H2 sensing and this study also opens up a general approach for tailoring the selectivity of gas sensors by surface modification.  相似文献   

14.
A seedless solution process is developed for controllable growth of crystalline ZnO micro/nanowire arrays directly on single‐layer graphene sheets made in chemical vapor deposition (CVD). In particular, the alignment of the ZnO micro/nanowires correlates well with the density of the wires, which is determined by both the sample configuration in solution and the graphene surface cleaning. With increasing wire density, the ZnO micro/nanowire array alignment may be varied from horizontal to vertical by increasing the physical confinement. Ultraviolet photodetectors based on the vertically aligned ZnO micro/nanowires on graphene show high responsivity of 1.62 A W?1 per volt, a 500% improvement over epitxial ZnO sensors, a 300% improvement over ZnO nanoparticle sensors, and a 40% improvement over the previous best results for nanowire/graphene hybrid sensors. This seedless, floating growth process could be scaled up for large scale growth of oriented ZnO micro/nanowires on graphene at low costs.  相似文献   

15.
Flat panel display technology seems to be an ever‐expanding field developing into a multibillion dollar market. A set of technical solutions involve a transparent conducting film (TCF) that is today still dominated by indiumtinoxide (ITO). In a race to find alternatives that would avoid the indium pitfalls, mainly due to its increasing price and limited natural availablity, replacement materials have been extensively investigated. This work demonstrates that by exploiting basic principles of crystal growth in geometrically constrained conditions, zinc oxide (ZnO) could easily be utilized for this purpose. ZnO layers were grown on inexpensive glass substrates via lowtemperature citrateassisted hydrothermal (HT) method. It was shown that in the nucleation stage the crystal growth can be efficiently controlled by spatially confined oriented growth (SCOG) mechanism to produce smooth and dense (0001) oriented polycrystalline ZnO films with superb optical properties. Our products show optical transparency of 82% and surprisingly low sheet resistance for undoped ZnO, only in the order of few 100 Ω sq?1. We believe that a very high degree of selforganization between the ZnO crystals in our polycrystalline films grown under controlled SCOG conditions is main reason for the highest so far reported transparency to conductivity ratio for undoped ZnO thin film ceramics.  相似文献   

16.
17.
A biomimetic approach for the shape‐selective synthesis of ZnO particles with controlled band gaps and morphologies at low temperatures is reported by Jianhui Zhang and co‐workers on p. 3897. Shape‐selective synthesis of ZnO is achieved by selective passivation of specific ZnO facets. Up to fifteen types of high‐purity ZnO structures were produced in this manner, allowing adjustment of room‐temperature photoluminescence and band gap. A novel polyvinylpyrrolidone (PVP)‐directed crystallization route is successfully developed for the shape‐selective synthesis of ZnO particles with distinctive shapes, including monolayer, bilayer, and multilayer structures, gears, capped pots, hemispheres, and bowls, at temperatures as low as 32 °C. This route is based on exploiting a new water/PVP/n‐pentanol system. In the system, PVP can greatly promote ZnO nucleation by binding water and direct ZnO growth by selectively capping the specific ZnO facets, which is confirmed by IR absorption spectra. The bandgap of the ZnO particles is readily tuned by modifying the product morphology by adjusting the PVP chain length, PVP amount, water volume, and reaction temperature. The remarkable ZnO structures and the biomimetic method demonstrated here not only expand the structures and applications of ZnO but also provide a new approach to explore the unusual structures for novel physicochemical properties and technological applications. Furthermore, the novel ZnO/Au/ZnO sandwich structure is successfully fabricated by inserting a Au plate into the bilayer ZnO structure.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号