首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Harvesting of both triplets and singlets yields electroluminescence quantum efficiencies of nearly 100% in organic light‐emitting diodes (OLEDs), but the production efficiency of excitons that can undergo radiative decay is theoretically limited to 100% of the electron–hole pairs. Here, breaking of this limit by exploiting singlet fission in an OLED is reported. Based on the dependence of electroluminescence intensity on an applied magnetic field, it is confirmed that triplets produced by singlet fission in a rubrene host matrix are emitted as near‐infrared (NIR) electroluminescence by erbium(III) tris(8‐hydroxyquinoline) (ErQ3) after excitonic energy transfer from the “dark” triplet state of rubrene to an “emissive” state of ErQ3, leading to NIR electroluminescence with an overall exciton production efficiency of 100.8%. This demonstration clearly indicates that the harvesting of triplets produced by singlet fission as electroluminescence is possible even under electrical excitation, leading to an enhancement of the quantum efficiency of the OLEDs. Electroluminescence employing singlet fission provides a route toward developing high‐intensity NIR light sources, which are of particular interest for sensing, optical communications, and medical applications.  相似文献   

2.
Recently, great progress has been made in the device performance of deep blue phosphorescent organic light‐emitting diodes (PHOLEDs) by developing high triplet energy charge‐transport materials, high triplet energy host and deep blue emitting phosphorescent dopant materials. A high quantum efficiency of over 25% and a high power efficiency of over 15 lm/W have already been achieved at 1000 cd m?2 in the deep blue PHOLEDs with a y color coordinate less than 0.20. In this work, recent developments in organic materials for high efficiency deep blue PHOLEDs are reviewed and a future strategy for the development of high efficiency deep blue PHOLEDs is proposed.  相似文献   

3.
4.
Degradation in organic light‐emitting diodes (OLEDs) is a complex problem. Depending upon the materials and the device architectures used, the degradation mechanism can be very different. In this Progress Report, using examples in both small molecule and polymer OLEDs, the different degradation mechanisms in two types of devices are examined. Some of the extrinsic and intrinsic degradation mechanisms in OLEDs are reviewed, and recent work on degradation studies of both small‐molecule and polymer OLEDs is presented. For small‐molecule OLEDs, the operational degradation of exemplary fluorescent devices is dominated by chemical transformations in the vicinity of the recombination zone. The accumulation of degradation products results in coupled phenomena of luminance‐efficiency loss and operating‐voltage rise. For polymer OLEDs, it is shown how the charge‐transport and injection properties affect the device lifetime. Further, it is shown how the charge balance is controlled by interlayers at the anode contact, and their effects on the device lifetime are discussed.  相似文献   

5.
Although organic light‐emitting diodes (OLEDs) are promising for use in applications such as in flexible displays, reports of long‐lived flexible OLED‐based devices are limited due to the poor environmental stability of OLEDs. Flexible substrates such as plastic allow ambient oxygen and moisture to permeate into devices, which degrades the alkali metals used for the electron‐injection layer in conventional OLEDs (cOLEDs). Here, the fabrication of a long‐lived flexible display is reported using efficient and stable inverted OLEDs (iOLEDs), in which electrons can be effectively injected without the use of alkali metals. The flexible display employing iOLEDs can emit light for over 1 year with simplified encapsulation, whereas a flexible display employing cOLEDs exhibits almost no luminescence after only 21 d with the same encapsulation. These results demonstrate the great potential of iOLEDs to replace cOLEDs employing alkali metals for use in a wide variety of flexible organic optoelectronic devices.  相似文献   

6.
7.
Inter‐ and intramolecular charge‐transfer processes are combined using an exciplex‐forming host and a thermally activated delayed fluorescent dopant, for fabricating efficient fluorescent organic light‐emitting diodes along with the reduced efficiency roll‐off at high current densities. Extra conversion on the host from triplet exciplexes to singlet exciplexes followed by energy transfer to the dopant reduces population of triplet excitons on dopant molecules, thereby reducing the triplet exciton annihilations at high current densities.  相似文献   

8.
Perovskite light‐emitting diodes (LEDs) have recently attracted great research interest for their narrow emissions and solution processability. Remarkable progress has been achieved in green perovskite LEDs in recent years, but not blue or red ones. Here, highly efficient and spectrally stable red perovskite LEDs with quasi‐2D perovskite/poly(ethylene oxide) (PEO) composite thin films as the light‐emitting layer are reported. By controlling the molar ratios of organic salt (benzylammonium iodide) to inorganic salts (cesium iodide and lead iodide), luminescent quasi‐2D perovskite thin films are obtained with tunable emission colors from red to deep red. The perovskite/polymer composite approach enables quasi‐2D perovskite/PEO composite thin films to possess much higher photoluminescence quantum efficiencies and smoothness than their neat quasi‐2D perovskite counterparts. Electrically driven LEDs with emissions peaked at 638, 664, 680, and 690 nm have been fabricated to exhibit high brightness and external quantum efficiencies (EQEs). For instance, the perovskite LED with an emission peaked at 680 nm exhibits a brightness of 1392 cd m?2 and an EQE of 6.23%. Moreover, exceptional electroluminescence spectral stability under continuous device operation has been achieved for these red perovskite LEDs.  相似文献   

9.
10.
The external quantum efficiency (EQE) of organic light‐emitting diodes (OLEDs) has been dramatically improved by developing highly efficient organic emitters such as phosphorescent emitters and thermally activated delayed fluorescent (TADF) emitters. However, high‐EQE OLED technologies suffer from relatively poor device lifetimes in spite of their high EQEs. In particular, the short lifetimes of blue phosphorescent and TADF OLEDs remain a big hurdle to overcome. Therefore, the high‐EQE approach harvesting singlet excitons of fluorescent emitters by energy transfer processes from the host or sensitizer has been explored as an alternative for high‐EQE OLED strategies. Recently, there has been a big jump in the EQE and device lifetime of singlet‐exciton‐harvesting fluorescent OLEDs. Recent progress on the materials and device structure is discussed herein.  相似文献   

11.
12.
13.
Organic light‐emitting diodes (OLEDs) have rapidly progressed in recent years due to their unique characteristics and potential applications in flat panel displays. Significant advancements in top‐emitting OLEDs have driven the development of large‐size screens and microdisplays with high resolution and large aperture ratio. After a brief introduction to the architecture and types of top‐emitting OLEDs, the microcavity theory typically used in top‐emitting OLEDs is described in detail here. Then, methods for producing and understanding monochromatic (red, green, and blue) and white top‐emitting OLEDs are summarized and discussed. Finally, the status of display development based on top‐emitting OLEDs is briefly addressed.  相似文献   

14.
The design of thermally activated delayed fluorescence (TADF) materials both as emitters and as hosts is an exploding area of research. The replacement of phosphorescent metal complexes with inexpensive organic compounds in electroluminescent (EL) devices that demonstrate comparable performance metrics is paradigm shifting, as these new materials offer the possibility of developing low‐cost lighting and displays. Here, a comprehensive review of TADF materials is presented, with a focus on linking their optoelectronic behavior with the performance of the organic light‐emitting diode (OLED) and related EL devices. TADF emitters are cross‐compared within specific color ranges, with a focus on blue, green–yellow, orange–red, and white OLEDs. Organic small‐molecule, dendrimer, polymer, and exciplex emitters are all discussed within this review, as is their use as host materials. Correlations are provided between the structure of the TADF materials and their optoelectronic properties. The success of TADF materials has ushered in the next generation of OLEDs.  相似文献   

15.
Highly efficient, yellow‐fluorescent organic light‐emitting diodes with a maximum external quantum efficiency exceeding 25.0% and extended lifetime are reported using iridium‐complex sensitizers doped in an exciplex host. Energy transfer processes reduce the lifetime of the exciplex and excitons on the Ir complexes and enable an excited state to exist in a conventional fluorescent emitter, thereby increasing device lifetime. The device stability depends on the location of the excited state.  相似文献   

16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号