首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Bulk photopolymerization was used to synthesize a series of semi‐interpenetrating polymer network (s‐IPN) based on linear poly(vinyl acetate) and crosslinked N‐butyl acrylate/1,6‐hexandiol diacrylate (HDDA) copolymer. Different formulations were used by varying the monoacrylate/diacrylate molar ratio and the linear polymer concentration. The polymerization kinetics was studied as a function of the s‐IPN composition by FTIR spectroscopy. It was observed that the reaction rate increases by increasing the linear polymer amount. This effect is much more pronounced in the reaction mixtures with a higher diacrylate concentration, playing a key role the restricted mobility of the macroradicals involved in the bimolecular termination. The maximum conversion increases regularly with linear polymer concentration in the blend and resulted to be very high, ranging from 95 to 98%. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

2.
Novel crosslinked thin polymer networks based on vegetable oil hydroxy fatty acids (HFAs) were prepared by UV photopolymerization and their mechanical properties were evaluated. Two raw materials, castor oil and 7,10-dihydroxy-8(E)-octadecenoic acid (DOD) were used as sources of mono- and di-HFAs, respectively. Poly(ethylene glycol) (PEG) diacrylate and poly(ε-caprolactone) diacrylate were synthesized and used as crosslinking agents to form crosslinked polymer networks by UV-initiated free-radical polymerization with acrylated castor oil or acrylated DOD. The synthesis of acrylate derivatives was confirmed using FT-IR and 1H-NMR spectroscopic techniques. The composition of the reaction mixture and the type/length of crosslinking agent were changed to obtain crosslinked polymer networks with various mechanical properties. For polymers prepared from high molecular weight (20,000) PEG, a 58–60% of the initial weights decreased in 35 days in phosphate buffer solution (pH 7.2) containing lipase enzyme. These potentially biodegradable polymers based on vegetable oil HFAs can be used as eco-friendly materials for various applications to replace the existing petroleum-based polymers currently used.  相似文献   

3.
Fluorinated polyacrylates are highly hydrophobic and oleophobic. However, their poor mechanical properties prevent their development in many applications. Combination of a fluorinated polyacrylate network with a rigid cellulose acetate butyrate (CAB) network in an interpenetrating polymer network (IPN) architecture is an effective method for improving the mechanical properties of fluorinated polyacrylates. IPNs combining poly(3,3,4,4,5,5,6,6,7,7,8,8,8‐tridecafluorooctyl acrylate) (polyAcRf6) with CAB were prepared according to an in situ polymerization/crosslinking synthesis. CAB was crosslinked by addition between unmodified hydroxyl groups and the isocyanate of a pluri‐isocyanate crosslinker. The fluorinated network was obtained through free‐radical copolymerization of 3,3,4,4,5,5,6,6,7,7,8,8,8‐tridecafluorooctyl acrylate with poly(ethylene glycol dimethacrylate). The rates of formation of both networks were followed using Fourier transform infrared spectroscopy. Differential scanning calorimetry (DSC) and dynamic mechanical thermal analysis (DMTA) of IPNs show a single glass transition temperature and a single mechanical relaxation temperature, which are characteristic of a high degree of interpenetration between the partner networks. The mechanical properties of IPNs are greatly improved compared with those of the single fluorinated network. CAB/polyAcRf6 IPNs were prepared, and characterized using DSC and DMTA as well as contact angle measurements for their surface properties. As hoped, the mechanical properties of such materials are much improved compared with those of the fluorinated partner alone. Copyright © 2010 Society of Chemical Industry  相似文献   

4.
Semi1 and semi2 interpenetrating polymer networks of poly(vinyl chloride) PVC and in situ formed poly(butyl acrylate) (PBA) have been synthesized and characterized using diallyl phthalate (DAP) and ethylene glycol dimethacrylate (EGDM) as the crosslinkers of PVC and PBA, respectively. These two types of IPNs have been compared with respect to their mechanical and thermal properties. The semi1 IPNs displayed a decrease in their mechanical parameters and the physical properties as well, while in contrast, the semi2 IPNs exhibited a marginal increase in the corresponding values when compared to the crosslinked PVC in the case of semi1 IPN and linear PVC in case of semi2 IPN. The representative samples of semi1 and semi2 IPNs revealed a two‐stage‐degradation typical of PVC while confirming the increased stability of the samples with higher onset temperature of degradation. The softening characteristics as detected by thermomechanical analysis are in conformity with their mechanicals. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

5.
Epoxy based on diglycidyl ether of bisphenol A + 4,4′diaminodiphenylsulfone blended with poly(vinyl acetate) (PVAc) was investigated through differential scanning calorimetry (DSC), dynamic mechanical thermal analysis (DMTA) and environmental scanning electron microscopy (ESEM). The influence of PVAc content on reaction induced phase separation, cure kinetics, morphology and dynamic‐mechanical properties of cured blends at 180°C is reported. Epoxy/PVAc blends (5, 10 and 15 wt % of PVAc content) are initially miscible but phase separate upon curing. DMTA α‐relaxations of cured blends agree with Tg results by DSC. The conversion‐time data revealed the cure reaction was slower in the blends than in the neat system, although the autocatalytic cure mechanism was not affected by the addition of PVAc. ESEM showed the cured epoxy/PVAc blends had different morphologies as a function of PVAc content: an inversion in morphology took place for blends containing 15 wt % PVAc. The changes in the blend morphology with PVAc content had a clear effect on the DMTA behavior. Inverted morphology blends had low storage modulus values and a high capability to dissipate energy at temperatures higher than the PVAc glass‐transition temperature, in contrast to the behavior of neat epoxy and blends with a low PVAc content. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 103: 1507–1516, 2007  相似文献   

6.
Novel polyurethane elastomers have been developed to incorporate plant oil into their matrix. Bisphenol A glycerolate diacrylate was used as a chain extender for the polyurethane prepolymer obtained from poly(tetramethylene oxide) glycol and 1,6‐hexane diisocyanate. The curing of the polyurethane acrylate matrix in the presence of the plant oil results in a network matrix which includes renewable resources in their structure. The effects of the inclusion of different vegetable oil (such as soybean oil, rapeseed oil, cotton oil, or sunflower oil) into the crosslinked polyurethane acrylates matrix were studied by evaluating various properties of the films such as the thermal behavior, the tensile properties, and the surface properties. The increases in chain extender content determine an increase of the thermal stability (the 10% weight loss decomposition temperatures increase from 325 to 375°C) and mechanical strength (from 3 to 9 MPa). Contact angle measurements have shown that the hydrophobic property of the films surface slightly increased with the incorporation of plant oil into the crosslinked polyurethane matrix. In addition, polyurethane/plant oil blends exhibit enhanced mechanical strength (from 3 to 9.8 MPa), as well as an increased roughness reaching a maximum average (113 nm) in the case of cotton oil. All polyurethane/plant oil blend present higher values for glass transition temperature and slightly enhanced values for thermal stability. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

7.
Waterborne poly(styrene‐co‐butyl acrylate) was prepared via miniemulsion polymerization in which nanoclay (Cloisite® 30B, modified natural MMT) in different concentrations was encapsulated. Scanning electron microscopy, X‐ray diffraction, and transmission electron microscopy confirmed the encapsulation and intercalated‐exfoliated structure of Cloisite® 30B within poly(styrene‐co‐butyl acrylate). The effect of nanoclay content on water vapor permeability, water uptake, oxygen permeability, thermal, and mechanical properties of thin films containing 1.5, 2.56, 3.5, and 5.3 wt % encapsulated Cloisite® 30B in poly(styrene‐co‐butyl acrylate) was investigated. The presence of encapsulated Cloisite® 30B within the polymer matrix improved tensile strength, Young's modulus, and toughness of the nanocomposites depending on the nanoclay content. Water vapor transmission rate, oxygen barrier properties, and thermal stability were also improved. The results indicated that the incorporation of Cloisite® 30B in the form of encapsulated platelets improved physicomechanical properties of the nanoclay‐polymer composite barrier films. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

8.
The objective of this work is to investigate the effect of the molecular mobility and resin formulation of UV-curable acrylate systems on conversion and ultimate mechanical properties. Thin single-layer films are produced from a series of nine mixtures of bisphenol A ethoxylate diacrylate, having different molecular weights (BisDAn = 2, BisDAn = 4, and a 50/50 mixture), with different amounts of tetraethylene glycol diacrylate (TEGDA) (0, 10, and 30 wt %). Fourier transform infrared analysis, tensile, and dynamic mechanical tests are carried out on UV post-cured resins, and the results are correlated with the amount of TEGDA. A higher content of TEGDA gives rise to an increase in conversion and glass-transition temperature. Tests on pure BisDAn = 2 and mixtures of BisDAn = 2 and BisDAn = 4 (BisDAn = 2 + 4) show that with increasing TEGDA content, the crosslink density increases. An increase in molecular weight of the acrylate monomer changes the final mechanical properties of UV-cured products. A material having a rubber behavior is the result of this change. Next to UV post-curing, the effect of thermal post-curing is studied. The results show that thermal treatments affect the mechanical properties mainly if the polymer has a low crosslink density. Formulations highly loaded with TEGDA lead to polymers with high crosslink density, low network mobility, and consequently low mechanical properties if thermally treated. Correlations between, on the one hand, resin formulation and process conditions and, on the other hand, the final mechanical properties of UV-cured systems are established allowing to optimize the structure–mechanical properties relationship in acrylate networks. © 2019 The Authors. Journal of Applied Polymer Science published by Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2020 , 137, 48498.  相似文献   

9.
Interpenetrating polymer networks (IPN) of novolac/poly (2‐ ethyl hexyl acrylate) (PEHA) have been prepared via in situ sequential technique of IPN formation. Full and semi‐IPNs were prepared with different blend ratios (w/w) e.g., 90 : 10, 80 : 20, and 70 : 30 in which the major constituent was novolac resin. A gradual decrease in specific gravity and hardness values was observed with increase in PEHA incorporation. A steady decrease in crosslink density with increase in PEHA fraction in the IPNs was quite evident. The IPNs were characterized with respect to their mechanical properties, e.g., ultimate tensile strength, percentage elongation at break, modulus, and toughness. Thermal behavior was studied by differential scanning calorimetry and thermogravimetric analysis. A plasticizing influence of PEHA on the rigid, brittle, and hard matrix of crosslinked phenolic resin is evidenced from the mechanical and thermal properties. The two‐phase surface morphology is revealed by scanning electron microscope. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

10.
Semi‐1 and semi‐2 interpenetrating polymer networks (IPNs) of poly(vinyl chloride) (PVC) and in situ formed poly(ethyl acrylate) (PEA) have been synthesized using diallyl phthalate and ethylene glycol dimethacrylate as the crosslinkers of PVC and PEA, respectively. These two types of IPNs have been compared with respect to their physical, mechanical, and thermal properties and an endeavor has been made to find a correlation of these properties with the morphology generated in these systems. The semi‐1 IPNs displayed a decrease in their tensile strength and modulus while in contrast; the semi‐2 IPNs exhibited a marginal increase with increasing crosslinked PEA incorporation. The semi‐1 and semi‐2 IPNs containing 10 and 30 wt % of PEA displayed a two‐stage degradation typical of PVC in their thermogravimetric and DSC studies while confirming the increased stability of the samples with higher percentages of PEA. The softening characteristics as detected by the extent of penetration of the thermomechanical probe as has been detected by thermomechanical analysis are in conformity with their mechanicals. The biphasic cocontinuous systems as explicit from the morphological studies reveal fibrillar characteristics in both the systems. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

11.
A soft-segment homopolymer of the monomer butyl acrylate was synthesized by miniemulsion polymerization to study the unique properties of poly(n-butyl acrylate) [P(nBuA)] as flexible coating. The nanostructure and linear properties of P(nBuA) synthesized using radiation and radical polymerization techniques were investigated. The molar mass and particle size of the prepared P(nBuA) polymers were characterized using size-exclusion chromatography and a particle-size analyzer, respectively. Photo-initiation of P(nBuA) was induced by 2,2-dimethoxy-2-phenylacetophenone in the presence of the crosslinkers polyethylene glycol diacrylate (PEGDA), bisphenol A ethoxylated diacrylate (BPAEDA), or trimethylpropane triacrylate (TMPTA), followed by crosslinking by ionizing radiation. The dynamic mechanical analysis parameters—tangent delta, storage modulus, and loss modulus—were determined for the three prepared crosslinked polymers of P(nBuA) and showed that P(nBuA-BPAEDA), P(nBuA-PEGDA), and P(nBuA-TMPTA) are strong and flexible materials. Thermal gravimetric analysis was used to study the thermal behavior of the prepared elastic P(nBuA) polymers. Thermal gravimetric data revealed that the crosslinkers improved the thermal stability of P(nBuA). The favorable properties of the synthesized polymers indicate their potential to be used as flexible nanocoatings for packaging materials.  相似文献   

12.
Utilizing polymer electrospinning technology, novel electrolyte membranes based on poly(vinylidene fluoride) (PVDF)/organomodified clay (OC)/tripropyleneglycol diacrylate (TPGDA) composite nanofibers with a diameter of 100–400 nm were fabricated for application in lithium batteries. Ultraviolet photo‐polymerization of electrospun PVDF/OC/TPGDA nanofibers generated chemically crosslinked TPGDA‐grafted PVDF/OC nanofibers exhibiting robust mechanical and electrochemical properties. The prepared fibrous PVDF/OC/TPGDA electrolytes were characterized in terms of morphology, crystallinity, electrochemical stability, ionic conductivity and cell cycleability. Based on differential scanning calorimetry analysis, the crystallinity of PVDF decreased by ca 10% on employing the OC and TPGDA. Compared with pure PVDF film‐based electrolyte membranes, the TPGDA‐ and OC‐modified PVDF electrolyte membranes exhibited improved mechanical properties and various electrochemical properties. The OC‐ and TPGDA‐modified microporous membranes are promising candidates for overcoming the drawbacks of the lower mechanical stability of fibrous‐type electrolytes with further improvement of electrochemical performance. Copyright © 2009 Society of Chemical Industry  相似文献   

13.
The effect of dicumyl peroxide (DCP) content on the gel fraction, mechanical, dynamic mechanical, and thermal properties of linear low‐density polyethylene (LLDPE)/ethylene‐co‐methyl acrylate (EMA) blends were studied. Gel content of the blends increases with increasing DCP content, and EMA is more prone to crosslinking than LLDPE. Wide‐angle X‐ray diffraction (WAXD) and differential scanning calorimetry (DSC) were used to study the effect of DCP crosslinking on percent crystallinity and crystalline structure of the blends and individual components. At lower level of DCP loading, crosslinking process does not have significant effect on the crystalline structure of the LLDPE, which was confirmed from the percent crystallinity and lattice distance value. However, at higher DCP content, percent crystallinity decreases significantly. At lower EMA concentration (<50%), percent crystallinity and lattice distance remain unchanged up to 2 wt % of DCP. For EMA contents of more than 50 wt %, increasing DCP content reduces the crystallinity of the blends and increases the lattice distance. The highest level of mechanical and dynamic mechanical properties was observed for 60/40 LLDPE/EMA blends at 2 wt % DCP. Addition of LLDPE‐g‐MA (3 wt %) as a compatibilizer enhances the properties of the vulcanizates. Blends crosslinked with DCP up to 0.3 wt % can easily be reprocessed. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

14.
A series of shape‐memory polyurethanes based on poly(ϵ‐caprolactone) diol were prepared with novel hydroxyl‐terminated hyperbranched polyurethanes as crosslinkers and were characterized by Fourier transform infrared spectroscopy, 1H‐NMR, gel permeation chromatography, differential scanning calorimetry, scanning electron microscopy, wide‐angle X‐ray diffraction, dynamic mechanical analysis, tensile testing, and shape‐memory testing. The molecular weight of the soluble polymers ranged from 5.1 × 104 to 29.0 × 104 g/mol. The differential scanning calorimetry and wide‐angle X‐ray diffraction data indicated that when the crystallinities of the crosslinked polymers were compared to that of linear polyurethane, this parameter was improved when the crosslinker was in low quantity. The storage modulus ratios obtained from the dynamic mechanical analyses data of the crosslinked polymers were also high compared to that of the linear polyurethane. As a result, crosslinked polymers showed better shape‐memory properties compared to the linear polyurethanes. Also, the that incorporation of the hyperbranched polymer as a crosslinker into the polyurethane chain improved the thermal and mechanical properties of the polymer. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

15.
Hydrophobic mica particles were prepared by piranha solution activation, silanization, and copolymerization with acrylate monomers. Its surface morphology, hydrophilic properties, and thermogravimetric analysis changed differently in comparison with those of pristine mica. Scanning electron microscopy (SEM) showed that the modified (001) mica surface changed from flat to coarse. Thermogravimetric curves demonstrated that silane coupling agents and the grafted polymer were anchored on the modified‐mica surface. The alternating surface polarity state was verified by different dispersion performances in the solvents. SEM images showed that the polypropylene (PP)/modified‐mica composites had a better quality compatibility than the PP/untreated‐mica composites. The PP/polymer‐grafted‐mica composites had improved mechanical properties, including stretching, tension, and impact properties. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 44985.  相似文献   

16.
Ultraviolet (UV) curing technology has been widely used in many applications because it has several distinct advantages compared to solvent‐based processes or thermal‐curing technology. The effects of photoinitiator types and their contents as well as reactive diluent types and their contents on the UV‐curing behavior and mechanical properties of a UV‐curable polyester acrylate resin were investigated in this study. Three photoinitiators, Irgacure 184, Darocur 1173, and benzophenone, were used in this study. Hexanediol diacrylate, tripropylene glycol diacrylate, and trimethylol propane triacrylate were used as reactive diluents to modify the properties of the acrylate resin. The change of chemical structure during UV curing was monitored by FTIR. A universal testing machine was used to measure the tensile properties of various UV‐cured acrylate films of different compositions. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 92: 3921–3928, 2004  相似文献   

17.
The biopolymer poly‐3‐hydroxybutyrate‐co‐3‐hydroxyvalerate (PHBV) is a promising material for packaging applications but its high brittleness is challenging. To address this issue, PHBV was blended with nine different biopolymers and polymers in order to improve the processing and mechanical properties of the films. Those biopolymers were TPS, PBAT, a blend of PBAT + PLA, a blend of PBAT + PLA + filler, PCL and PBS, and the polymers TPU, PVAc, and EVA. The extruded cast films were analyzed in detail (melting temperature, crystallinity, mechanical properties, permeation properties, and surface topography). A decrease in crystallinity and Young's modulus and an increase in elongation at break and permeability were observed with increasing biopolymer/polymer concentration. In PHBV‐rich blends (≥70 wt % PHBV), the biopolymers/polymers PCL, PBAT, and TPU increased the elongation at break while only slightly increasing the permeability. Larger increases in the permeability were found for the films with PBS, PVAc, and EVA. The films of biopolymer/polymer‐rich blends (with PBAT, TPU, and EVA) had significantly different properties than pure PHBV. A strong effect on the properties was measured assuming that at certain biopolymer/polymer concentrations the coherent PHBV network is disrupted. The interpretation of the permeation values by the Maxwell–Garnett theory confirms the assumption of a phase separation. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46153.  相似文献   

18.
Acrylic polyols of different hydroxyl numbers consisting of hydroxy ethyl methacrylate, methyl methacrylate, butyl acrylate, and styrene were prepared by free‐radical solution as well as suspension polymerization techniques in the presence of benzoyl peroxide initiator. These polyols were crosslinked with butoxy methyl melamine at a ratio of 85 : 15 in the presence of acid catalyst. The thermal stability of polyols and their corresponding crosslinked films was studied by thermogravimetric (TG) technique. The Broido and Coats–Redfern methods were used to calculate the activation energy of thermal decomposition from standard TG curves. Dynamic mechanical thermal analysis was used to study the dynamic mechanical properties and determination of glass‐transition temperature of acrylic/melamine crosslinked films. The results indicate that the thermal stability of polyols and crosslinked films strongly depends on the hydroxyl number of the acrylic polyols. It was found that acrylic polyols synthesized by suspension polymerization methods upon crosslinking yield more thermally stable and flexible films than polyols prepared by solution polymerization methods. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 91: 27–34, 2004  相似文献   

19.
Semi‐interpenetrating polymer networks (semi‐IPNs) based on crosslinked polyurethane (PU) and linear polyvinylpyrrolidone (PVP) were synthezised, and their thermal and dynamic mechanical properties and dielectric relaxation behavior were studied to provide insight into their structure, especially according to their composition. The differential scanning calorimetry results showed the glass transitions of the pure components: one glass‐transition temperature (Tg) for PU and two transitions for PVP. Such glass transitions were also present in the semi‐IPNs, whatever their composition. The viscoelastic properties of the semi‐IPNs reflected their thermal behavior; it was shown that the semi‐IPNs presented three distinct dynamic mechanical relaxations related to these three Tg values. Although the temperature position of the PU maximum tan δ of the α‐relaxation was invariable, on the contrary the situation for the two maxima observed for PVP was more complex. Only the maximum of the highest temperature relaxation was shifted to lower temperatures with decreasing PVP content in the semi‐IPNs. In this study, we investigated the molecular mobility of the IPNs by means of dielectric relaxation spectroscopy; six relaxation processes were observed and indexed according the increase in the temperature range: the secondary β‐relaxations related to PU and PVP chains, an α‐relaxation due to the glass–rubber transition of the PU component, two α‐relaxations associated to the glass–rubber transitions of the PVP material, and an ionic conductivity relaxation due to the space charge polarization of PU. The temperature position of the α‐relaxation of PU was invariable in semi‐IPNs, as observed dynamic mechanical analysis measurements. However, the upper α‐relaxation process of PVP shifted to higher temperatures with increasing PVP content in the semi‐IPNs. We concluded that the investigated semi‐IPNs were two‐phase systems with incomplete phase separation and that the content of PVP in the IPNs governed the structure and corresponding properties of such systems through physical interactions. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 90: 1191–1201, 2003  相似文献   

20.
Nanocomposites based on sequential semi–interpenetrating polymer networks (semi–IPNs) of crosslinked polyurethane and linear poly(2‐hydroxyethyl methacrylate) filled with 1–15 wt % of nanofiller densil were prepared and investigated. Nanofiller densil used in an attempt to control the microphase separation of the polymer matrix by polymer–filler interactions. The morphology (SAXS, AFM), mechanical properties (stress–strain), thermal transitions (DSC) and polymer dynamics (DRS, TSDC) of the nanocomposites were investigated. Special attention has been paid to the raising of the hydration properties and the dynamics of water molecules in the nanocomposites in the perspective of biomedical applications. Nanoparticles were found to aggregate partially for higher than 3 and 5 wt % filler loading in semi–IPNs with 17 and 37 wt % PHEMA, respectively. The results show that the good hydration properties of the semi–IPN matrix are preserved in the nanocomposites, which in combination with results of thermal and dielectric techniques revealed also the existence of polymer–polymer and polymer–filler interactions. These interactions results also in the improvement of physical and mechanical properties of the nanocomposites in compare with the neat matrix. The improvement of mechanical properties in combination with hydrophilicity and biocompatibility of nanocomposites are promising for use these materials for biomedical application namely as surgical films for wound treatment and as material for producing the medical devises. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43122.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号