首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effects of the fiber cross‐sectional shape on the structure and properties of polyester fibers were investigated. Fully drawn yarn (FDY) polyester fibers (167 dtex and 48 filaments) were produced under the same spinning conditions used in a spinning plant. The only difference between the fibers was their cross‐sectional shapes. Four different cross‐sectional shapes were chosen for the experimental work: round, hollow‐round, trilobal, and hollow‐trilobal. The crystallinity and values of the maximum stress, maximum strain, modulus, yield stress, shrinkage in boiling water, and unevenness of the fibers were determined. The difference in the cross‐sectional shapes influenced the modulus, maximum strain, yield stress, and shrinkage in boiling water. No effects on the crystallinity and maximum stress were observed. The results suggested that the hollow fibers had higher amorphous orientation than the full fibers. The hollow‐round fiber had the highest unevenness value. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 103: 2615–2621, 2007  相似文献   

2.
Polyester polyol (PP)‐based polyurethanes (PUs) consisting of two difunctional acids [1,4‐cyclohexanedicarboxylic acid (CHDA) and 1,6‐adipic acid (AA)] and also two diols [1,4‐cyclohexanedimethanol (CHDM) and 1,6‐hexanediol (HDO)] were synthesized by a two‐step procedure with a variable feed ratio of CHDA to AA but fixed ratio of CHDM and HDO. The prepared PPs and/or PUs were characterized by Fourier transform infrared spectroscopy, X‐ray diffraction spectroscopy, and atomic force microscopy. The effects of difunctional acids on the thermal, mechanical, and dynamic mechanical thermal properties of PPs or PU films were investigated by thermogravimetry analysis, differential thermogravimetry and dynamic mechanical thermal analysis. The results show that PP exhibits a lowest viscosity with the mole fraction of CHDA and AA at 3 : 7 whereas it delivers a lowest melting point with the mole fraction at 9 : 1. After PPs being cross‐linked by isocyanate trimers, the impact resistance, shear strength and glass transition temperature increase the mixed‐acid formulations with increasing the content of CHDA. In detail, the resultant PU almost simultaneously exhibits the best mechanical and thermal properties when the mole fraction of CHDA and AA is kept constant at 9 : 1, thus giving rise to a high glass transition temperature of 56.4°C and a onset decomposition temperature of 350°C, and also delivering a balanced toughness and hardness with an impact resistance of 100 J/g and storage modulus as high as 109 Pa. This path for synthesis of PP‐based PU provides a design tool for high performance polymer coatings. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41246.  相似文献   

3.
The effect of internal and terminal unsaturation on the properties of the acrylated polyester films was investigated. Four types of acrylated polyester resin were prepared using adipic acid, maleic anhydride, neopentyl glycol, trimethylolpropane, and acrylic acid. Terminal and internal double bond content as well as branching was adjusted by the molar quantities of trimethylolpropane and maleic anhydride, respectively. A reactive diluent, trimethylolpropane triacrylate (TMPTA), was also used. A three‐factor, three‐level Box‐Behnken design was used to investigate complex nonlinear relationships. Dynamic mechanical, fracture toughness, and tensile properties were evaluated with respect to the amount of terminal and internal unsaturation, and reactive diluent concentration. It was found that microgel formation extensively affects the final UV‐cured film properties. Small quantities of microgels function as micro‐support units, whereas high extent of microgelation causes phase separation through cluster formation and hence, decreases the mechanical properties. It is essential to control the extent of microgelation and phase separation to optimize product performance. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

4.
The acrylic monomeric couple, methyl methacrylate (MMA)‐triethylene glycol dimethacrylate (TEGDMA) was mixed and polymerized through bulk polymerization in open test tubes using three different routes. The simplest one was a monomer mixture of 70 wt % of MMA and 30 wt % of TEGDMA. The polymerization reaction was initiated by benzoil peroxide (BPO). The second route used a casting syrup composed of 20 wt % polymethyl methacrylate (PMMA) dissolved in 80 wt % MMA. This casting syrup was mixed with 30 wt % TEGDMA to initiate the polymerization with BPO. The final synthesis route was carried out using the aforementioned chemical composition with a polymerization initiated with a mixture of BPO and N,N dimethyl p‐toluidine (DMT) at a ratio of 10 : 1. The three synthesis routes produced different types of polymers which have remarkable differences in morphology, thermal behavior, and tensile properties. Several thermal transitions were found in each type of polymer by using differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). Gas chromatography and Fourier transform infrared were employed to determine the cause of each thermal transition revealed. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

5.
Citrate esters triethyl citrate, tributyl citrate, and acetyl tributyl citrate were used as plasticizers for amorphous poly(D,L ‐lactide) (PDLLA). The resultant compositions were analyzed by means of differential scanning calorimetry (DSC), dynamic mechanical thermal analysis, and tensile testing to investigate the properties of the blends. Glass transition temperatures (Tgs) obtained by DSC were also compared to theoretically calculated Tgs. Increasing plasticizer content decreased the resultant Tg of the blend with plasticizer efficiency enhanced as the molecular weight of the citrate ester increased. However, in blends with high plasticizer content, a lack of miscibility also occurred with increased molecular weight. Theoretical results were comparable with those obtained experimentally at compositions, which were miscible. Increasing plasticizer content increased the ductility and decreased the strength of the polymer. The addition of 10 wt % plasticizer to PDLLA decreased tensile strength by over 50% with the deterioration larger at higher concentrations of plasticizer. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

6.
The aim of this study was to examine the properties of polyester nanofibers produced by the electrospinning method. Solvent‐spun nanofibers with different concentrations of poly(ethylene terephthalate) (13, 16, and 20 wt %) were produced. The morphology and surface energy of the fibers were analyzed by scanning electron microscopy and contact angle measurements. Tensile testing, dynamic mechanical analysis, and differential scanning calorimetry were carried out to characterize the thermal and mechanical properties. X‐ray diffraction and attenuated total reflection Fourier transform infrared spectroscopy tests were performed to analyze the microstructural properties. The results show that a nanoweb of the 16 wt % solution had better mechanical and thermal behaviors because of the increased molecular orientation in the amorphous structure and the narrower fiber diameter distribution in the web. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

7.
The objective of this article is to study the combined effect of isophthalic acid (IPA) and polyethylene glycol (PEG‐400) in PET polymer and film on thermal, mechanical, and gas transport properties. The purpose of developing this material is to reduce the melting point, improve mechanical, thermal, and gas barrier properties. The chosen raw materials, namely, IPA and PEG for copolyester synthesis will replace partially the acid and diol monomers of PET. The molar concentration of comonomers (IPA and PEG‐400) were varied from 2 to 50% and the result shows that the gas barrier properties (namely O2, CO2, N2, and water vapor transmission rate), mechanical, and thermal properties were lesser than that of PET polymer. On improving the crystallinity of PET‐isophthalate‐PEG (PET‐IP) copolymer, barrier properties are improved than that of PET polymer. © 2012 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

8.
Nanocomposites of poly(lactide) (PLA) and the PLA plasticized with diglycerine tetraacetate (PL‐710) and ethylene glycol oligomer containing organo‐modified montmorillonites (ODA‐M and PGS‐M) by the protonated ammonium cations of octadecylamine and poly(ethylene glycol) stearylamine were prepared by melt intercalation method. In the X‐ray diffraction analysis, the PLA/ODA‐M and plasticized PLA/ODA‐M composites showed a clear enlargement of the difference of interlayer spacing between the composite and clay itself, indicating the formation of intercalated nanocomposite. However, a little enlargement of the interlayer spacing was observed for the PLA/PGS‐M and plasticized PLA/PGS‐M composites. From morphological studies using transmission electron microscopy, a finer dispersion of clay was observed for PLA/ODA‐M composite than PLA/PGS‐M composite and all the composites using the plasticized PLA. The PLA and PLA/PL‐710 composites containing ODA‐M showed a higher tensile strength and modulus than the corresponding composites with PGS‐M. The PLA/PL‐710 (10 wt %) composite containing ODA‐M showed considerably higher elongation at break than the pristine plasticized PLA, and had a comparable tensile modulus to pure PLA. The glass transition temperature (Tg) of the composites decreased with increasing plasticizer. The addition of the clays did not cause a significant increase of Tg. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci, 2006  相似文献   

9.
An environmentally friendly bleached extruder chemi‐mechanical pulp fiber or wood flour was melt compounded with poly(lactic acid) (PLA) into a biocomposite and hot compression molded. The mechanical, thermal, and rheological properties were determined. The chemical composition, scanning electron microscopy, and Fourier transform infrared spectroscopy results showed that the hemicellulose in the pulp fiber raw material was almost completely removed after the pulp treatment. The mechanical tests indicated that the pulp fiber increased the tensile and flexural moduli and decreased the tensile, flexural, and impact strengths of the biocomposites. However, pulp fiber strongly reinforced the PLA matrix because the mechanical properties of pulp fiber‐PLA composites (especially the tensile and flexural strengths) were better than those of wood flour‐PLA composites. Differential scanning calorimetry analysis confirmed that both pulp fiber and wood flour accelerated the cold crystallization rate and increased the degree of crystallinity of PLA, and that this effect was greater with 40% pulp fiber. The addition of pulp fiber and wood flour modified the rheological behavior because the composite viscosity increased in the presence of fibers and decreased as the test frequency increased. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 44241.  相似文献   

10.
Poly(ethylene terephthalate) (PET) chips were coated by trisilanolphenyl–polyhedral oligomeric silsesquioxane (T‐POSS) and hexakis (para‐allyloxyphenoxy) cyclotriphosphazene (PACP) using the predispersed solution method, and PET/PACP/T‐POSS hybrids were further prepared by the melt‐blending method. The influence of T‐POSS on the rheological, thermal, and mechanical properties and flame retardancy of PET/PACP composites were discussed. The results suggest that T‐POSS was homogeneously dispersed in the PET matrix, which reduced the negative effects on polymer rheology and mechanical properties. For the PET/4%PACP/1%T‐POSS sample, the tensile strength at break and Tg increased from 29.67 MPa and 81.7 °C (PET/5%PACP) to 34.8 MPa and 85.8 °C, respectively, but the sample also self‐extinguished within 2 s, and the heat release capacity was reduced by 27.9% in comparison with that of neat PET.© 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 45912.  相似文献   

11.
An unsaturated polyester (UP) resin was modified by the addition of a thermosetting bismaleimide (BMD) as a second coreactive monomer. The copolymers were characterized in terms of mechanical, thermal, and morphological properties by tensile, bend, and impact testing; thermogravimetric analysis; heat deforming temperature analysis; dynamic mechanical analysis; and scanning electron microscopy. In addition, Fourier transform infrared spectroscopy of modified resin indicated that crosslinking networks were formed between BMD and UP. The properties of the modified resins were compared with those of unmodified resins. The results indicate that the addition of BMD not only improved the thermal decomposition temperature and heat deforming temperature but also caused small changes in the mechanical properties. The effect of the construct of BMD and the reactions among BMD, UP, and styrene were analyzed. The results show that BMD has great potential to improve the properties of UP. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 593–598, 2006  相似文献   

12.
Cross‐linked poly (vinyl alcohol) membranes were prepared using fumaric acid as the cross‐linking agent and were used for the pervaporation separation of water/isopropanol mixtures. Cross‐linking process was carried out at 150°C at three different times of 10, 30, and 60 min. The membranes were characterized by different known methods of FT‐IR, TGA, XRD as well as tensile test. The effects of cross‐linking time on the thermal and mechanical properties of the membranes and also their pervaporation performance were investigated. Formation of more ester groups by increasing the cross‐linking time was confirmed by the FT‐IR results. TGA analyses showed that thermal stability of the membranes is improved by prolonging the duration of cross‐linking process. This was due to the formation of more compact structure in the membranes. The XRD results revealed that the crystalline regions of the membranes were relatively diminished with an increase in the cross‐linking time. No specific trend was observed for the variation of tensile strength at break with the cross‐linking time. The PVA membrane cross‐linked for 60 min showed high selectivity of 1492 for water permeation for the feed mixture containing 10 wt % water. The temperature dependency of the permeation flux was investigated using Arrhenius relationship, and the activation energy values were calculated for total permeation (Ep), water (Epw), and IPA (EpIPA) fluxes. Lower value of Epw in comparison with EpIPA supported excellent dehydration performance of the cross‐linked membranes. Despite large increase in activation energy of water with prolonged cross‐linking time, the selectivity was improved. © 2012 Wiley Periodicals, Inc. J Appl Polym Sci, 2013  相似文献   

13.
The processing of cross‐linked polyarylene ether nitrile (PEN), which has a triazine rings structure, has been investigated under different reaction times and temperatures. In this study, the PEN films prepared by the tape‐casting formed the thermally stable triazine rings by catalytic cross‐linking reaction gradually, which was characterized by Fourier transform infrared spectroscopy. The chemical cross‐linking reaction occurred as the CN group absorption of PEN at 2221 cm−1 decreased and a new absorption peak, at 1682 cm−1, was observed, and the absorption peak intensity would be progressively larger, with the extension of the processing time. After the formation of cross‐linking networks, the cross‐linking degree and thermal and mechanical properties of the processed films were improved substantially, compared with the untreated films. The film with added ZnCl2 as the catalyst was more rapidly cross‐linked, and its properties were better than that without catalyst at the same treatment conditions. The glass‐transition temperature (Tg) of PEN films processed at 350°C for 4 h (213.65°C) was higher than that of PEN films before the treatment (161°C), and the tensile strength was also improved significantly. The PEN was processed at 350°C for 2 h, whose initial decomposition temperature increases by about 10°C, compared with that of untreated film, at one time. The rheology behavior of the cross‐linked films was processed on dynamic rheometer to monitor and track the process of polymer cross‐linking reaction. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

14.
A series of wholly carborane‐containing polyesters with high thermostability were successfully synthesized by the catalytic polycondensation of carborane diol monomers with carborane diacid chlorides. They can be used for the preparation of materials of high temperature resistant coatings and adhesive. The influence of solvent, reaction temperature, and reaction time on the molecular weight and yield of the polymers were studied. In comparison with the carborane‐free polyester, the carborane‐containing polyesters showed higher degradation temperature and char yield and lower degradation rate. The thermal gravimetric analyzer (TGA) curves indicate that the carborane group could effectively reduce the degradation rate of carborane‐containing polyesters, which give a char yield of exceeding 64% under air (47% under N2) at 700 °C. Such data are superior to the carborane‐free polyester, which showed a low char yield of around 0.3% under air (5% under N2) at the same condition. Moreover, the thermal transition mechanism of carborane‐containing polyesters was also studied. The FTIR spectra and TG‐FTIR analysis indicate that the carborane cage could react with oxygen to form BOB and BC linkages at elevated temperatures, which postpones the thermal decomposition of polyester and accounts for the high char yield. The newly prepared kind of high temperature polyesters have enormous technical and economic value, especially in the high temperature fields. They can be widely used as raw materials to prepare the high temperature resistant coatings or adhesives for automotive engine, aircraft and other equipments worked in high‐temperature environments. Under high environmental temperature, the good thermal stability is capable of keeping polyesters stable and expanding their service lives. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 44202.  相似文献   

15.
Cationic dyeable poly(trimethylene terephthalate) (CD‐PTT) and metallocene isotactic polypropylene (m‐iPP) polymers were extruded (in proportions of 75/25, 50/50, and 25/75) from two melt twin‐screw extruders to prepare three CD‐PTT/m‐iPP conjugated filaments of the island–sea type. This study investigated the thermal properties and mechanical characteristics of the CD‐PTT/m‐iPP conjugated filaments with gel permeation chromatography, differential scanning calorimetry, thermogravimetric analysis, potentiometry, rheometry, density gradients, wide‐angle X‐ray diffraction, extension stress–strain measurements, and scanning electron microscopy. The rheological behavior of the CD‐PTT/m‐iPP polyblended polymers exhibited negative‐deviation blends, and the 50/50 CD‐PTT/m‐iPP blend showed a minimum value of the melt viscosity. The experimental results from differential scanning calorimetry indicated that CD‐PTT and m‐iPP molecules formed an immiscible system. The tenacity of the CD‐PTT/m‐iPP conjugated filaments decreased initially and then increased as the m‐iPP content increased. Morphological observations revealed that the blends were in a dispersed phase structure. A pore/filament morphology of a larger size (0.5–3 μm in diameter) was observed after a 1,1,1,3,3,3‐hexafluoro‐2‐propanol (CD‐PTT was removed)/decalin (m‐iPP was removed) treatment in the cross section of a CD‐PTT/m‐iPP conjugated filament. The CD‐PTT and m‐iPP polymers were identified as an immiscible system. Blends with 10 wt % compatibilizer exhibited the maximum improvement in the tenacity. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 103: 2387–2394, 2007  相似文献   

16.
Single wool fibers were coated with TiO2 by using the sol‐gel method. The uniaxial tensile properties of TiO2 coated single wool fibers heated at different temperatures from 25 to 200°C were investigated and compared with those of uncoated single wool fibers. It was observed that the shape of the stress–strain curve of TiO2 coated wool fibers became the same as uncoated wool fibers and showed a similar tendency of change to uncoated wool fibers with increasing temperature. But, the TiO2 coated wool fibers obtained higher rigidity than uncoated wool fibers and up to their rupture points; they obtained higher stress levels in three deformation regions in the stress–strain curves, which indicates stronger wool fibers. Although the breaking extension of TiO2 coated wool fibers decreased little by about 8%, the Young's modulus of TiO2 coated wool fibers increased significantly by 19%, which was caused mostly by an increment in the stiffness of the cuticle layer of the wool fiber, and remained relatively higher than that of uncoated wool fibers after heat treatments. Structural changes in both uncoated and TiO2 coated single wool fibers due to thermal effect, which caused the changes in the uniaxial tensile properties and the thermal behaviors of these fibers were discussed by using spectroscopic and thermal analysis methods in detail. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 130: 898‐907, 2013  相似文献   

17.
The thermal stability of ultrahigh‐molecular‐weight polyethylene (UHMWPE) should be paid attention in its applications, although the fiber has excellent flexible tensile properties. The measurements for two kinds of UHMWPE fibers, Dyneema SK65 (The Netherlands) and ZHF (Beijing, China), were carried out at different annealing temperatures and for different aging times. Experimental and regression analysis results showed that the aging behavior of the fibers followed an exponential attenuation with the annealing temperature and aging time. The critical temperature for the safe use of the fibers was equal to or lower than 70°C and depended on the glass‐transition temperature; this was validated by tensile tests. The difference between the two fibers in the thermal properties resulted from the intrinsic supermolecular structures of the two fibers. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 97: 310–315, 2005  相似文献   

18.
New and effective approaches to the synthesis of 1,3‐bis(diphenylsilyl)‐2,2,4,4‐tetraphenylcyclodisilazane‐containing polydimethylsiloxanes ( P1 and P2 ) were developed. P1 was obtained by polycondensation of cyclodisilazane lithium salt and chloroterminated polydimethylsiloxane. P2 was produced by hydrosilylation of vinyl‐terminated cyclodisilazane and hydrogen‐terminated polydimethylsiloxane. The polycondensation completed quickly at room temperature, while the hydrosilylation was facile and did not require cumbersome air‐sensitive operations. P1 and P2 were characterized by Fourier transform infrared, nuclear magnetic resonance, gel permeation chromatography, differential scanning calorimetry, thermogravimetric analysis (TGA), and isothermal gravimetric analysis (IGA). TGA revealed the outstanding thermal properties of P1 and P2 with 5% weight loss temperatures (Td5) higher than 450°C. IGA proved their better thermal stability at 450°C for 800 min, compared to polydimethyldiphenylsiloxane. Dynamic mechanical analysis showed that silicone rubbers made from cyclodisilazane‐containing polydimethylsiloxanes could have a maximum tan δ value as high as 1.13 and had good prospects for damping material applications. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

19.
The article describes the effect of structure of vinyl ester resins (VE) on the mechanical properties of neat sheets as well as glass fabric‐reinforced composites. Different samples of VE were prepared by reacting ester of hexahydrophthalic anhydride (ER) and methacrylic acid (MAA) (1 : 1 molar ratio) followed by reaction of monomethacrylate terminated epoxy resin with glutaric (E) or adipic (F) or sebacic acid (G) (2 : 1 molar ratio). The neat VE were diluted with styrene and sheets were fabricated by using a glass mold. A significant reduction in the mechanical properties was observed by increasing the methylene content of resin backbone (i.e., sample E to G). Glass fabric‐reinforced composites were fabricated by vacuum assisted resin transfer molding (VARTM) technique. Resin content in the laminates was 50 ± 5 wt %. Increase in the number of methylene groups in the vinyl ester resin (i.e., increasing the bridge length) did not show any significant effect on limiting oxygen index (LOI) value (21 ± 1) of the laminates but tensile strength, tensile modulus, flexural strength, and flexural modulus all increased though these values are significantly lower than observed in laminates based on resin B. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

20.
The chemical modification of the structure of the unsaturated polyester obtained in poly condensation process of 1,2,3,6‐tetrahydrophthalic anhydride, maleic anhydride, and ethylene glycol by well known conventional method of epoxidation with peracetic acid in mild conditions has been presented. The new material containing both epoxy groups and unsaturated double bonds in polyester chain was characterized by FTIR and 1H NMR spectra. The prepared unsaturated epoxy polyester was suitable material for further chemical modification. Both epoxy groups and unsaturated double bonds can be used as cross‐linking sites. Curing behavior, thermal, and visco‐elastic properties of the unsaturated epoxy polyester cured with different hardeners: 1,2,3,6‐tetrahydrophthalic anhydride (THPA), hexahydrophthalic anhydride (HHPA), and/or with vinyl monomer (styrene) using radical initiator—benzoyl peroxide (BPO) were studied by differential scanning calorimetry (DSC), thermo gravimetric analysis (TGA), and dynamic mechanical analysis (DMA). © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号