首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this study, poly(N,N‐dimethylacrylamide) grafted chitosan (PDMAAm‐g‐CT) hydrogels were prepared for deoxyribonucleic acid (DNA) adsorption. Instead of directly grafting the N,N‐dimethylacrylamide (DMAAm) monomer onto the chitosan (CT) chains, poly(N,N‐dimethylacrylamide) with carboxylic acid end group (PDMAAm‐COOH) was firstly synthesized by free‐radical polymerization using mercaptoacetic acid (MAAc) as the chain‐transfer agent and then grafted onto the CT having amino groups. The synthesis of PDMAAm‐COOH and its grafting onto the CT chains were confirmed by attenuated total reflectance Fourier transform infrared (ATR‐FTIR) spectroscopy. From gel permeation chromatography measurements, the number‐average molecular weight (M n) and polydispersity index of PDMAAm‐COOH were found as 2400 g/mol and 2.3, respectively. The PDMAAm‐g‐CT hydrogels were utilized as the adsorbents in DNA adsorption experiments conducted at +4°C in a trisEDTA solution of pH 7.4. The hydrogels produced with higher PDMAAm‐COOH content exhibited higher DNA adsorption capacity. The DNA adsorption capacity up to 4620 μg DNA/g dry gel could be achieved with the PDMAAm‐g‐CT hydrogels prepared in 80.0 wt % PDMAAm‐COOH feed concentration. This value is approximately seven times higher than that of CT alone. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

2.
Comb‐type graft hydrogels, composed of chitosan and poly(N‐isopropylacrylamide) (PNIPAAm), were prepared to manifest rapid temperature and pH sensitivity. Instead of directly grafting the NIPAAm monomer onto the chitosan chain, semitelechelic PNIPAAm with carboxyl end group was synthesized by radical polymerization using 3‐mercaptopropionic acid as the chain‐transfer agent, and was grafted onto chitosan having amino groups. The comb‐type hydrogels were prepared with two different graft yields and grafting regions, such as surface‐ and bulk‐grafting, and then compared with a chitosan hydrogel. The synthesis of telechelic PNIPAAm and the formation of amide group were confirmed by using FTIR spectroscopy and gel permeation chromatography. Results from the water state and thermal stability revealed that the introduction of the PNIPAAm side chain disturbed the ordered arrangement of the chitosan molecule, resulting in an increase in the equilibrium water content. Comb‐type graft hydrogels showed rapid temperature and pH sensitivity because of the free‐ended PNIPAAm attached to the chitosan main chain and the chitosan amino group itself, respectively. In particular, the surface graft hydrogel maintained its dimension at low pH, although the chitosan main chain was not crosslinked, whereas chitosan and bulk graft hydrogel were dissolved as a result of the coating effect of pH‐independent PNIPAAm. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 92: 2612–2620, 2004  相似文献   

3.
Super adsorbent polyacrylamide (PAAm)/nanoclay (laponite, Lap) hydrogels were prepared by in situ free radical polymerization of AAm in an aqueous solution with clay as a crosslinker. The swelling properties and water‐soluble cationic dye adsorption behaviors of the PAAm/laponite (PAAm/Lap) nanocomposite (NC) hydrogels were investigated. The parameters of swelling and diffusion of water in dye solutions were evaluated for the PAAm/Lap NC hydrogels. The adsorption behavior of the monovalent cationic dyes such as Basic Blue 12 (BB 12), Basic Blue 9 (BB 9), and Basic Violet 1 (BV 1), were studied on the NC hydrogels. The effects of the clay content of the hydrogel on its cationic dye uptake behavior were studied. The adsorption studies indicated that the rates of dye uptake by the NC hydrogels increased in the following order: BB 9 > BB 12 > BV 1. This order is similar to the swelling results of the PAAm/Lap NC hydrogel in the dye solutions. The equilibrium uptakes of the different dyes by the PAAm/Lap NC hydrogel were nearly the same. In the dye absorption studies, S‐type adsorption in the Giles classification system was found for the BB 12 and BV 1 dyes, whereas L ‐type was observed for the BB 9 dye. After the heat treatment of PAAm/Lap, the rate of dye uptake and equilibrium dye uptake were increased. The NC hydrogels may be considered as a good candidate for environmental applications to retain more water and to remove dyes. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

4.
Hydrophilic polymer/sodium montmorillonite (Na‐MMT) hybrid nanomaterials were prepared via surface‐initiated redox polymerization of 2‐acrylamido‐2‐methyl‐1‐propanesulfonic acid (PAMPS‐g‐MMT), acrylamide (PAAm‐g‐MMT) and styrenesulfonic acid sodium salt (PSSA‐g‐MMT) from surface of aminopropyl‐functionalized sodium montmorillonite (AMMT) dispersed in an aqueous medium. Cerium(IV) ammonium nitrate/nitric acid and aminopropyl groups on the surface of AMMT were used as oxidant and reducing groups, respectively. AMMT was prepared by covalently attaching 3‐aminopropyltriethoxysilane onto the surface of Na‐MMT. Hydrophilic monomers (AMPS, AAm and SSA) were then grafted onto AMMT dispersed in water via redox initiation at 40 °C. Structure, morphology and thermal properties of the AMMT, PAMPS‐g‐MMT, PAAm‐g‐MMT and PSSA‐g‐MMT hybrid materials were characterized using Fourier transform infrared (FTIR), X‐ray diffraction (XRD) and thermogravimetric (TGA) analyses, respectively. FTIR results indicated that hydrophilic monomers were successfully grafted onto the surface of MMT. Grafting amounts of the hydrophilic polymers were estimated from TGA thermograms to be 28.8, 118.8 and 14.4% for PAMPS, PAAm and PSSA, respectively. XRD patterns showed an exfoliated morphology for PAMPS‐ and PAAm‐grafted MMT hybrid nanomaterials and an intercalated/exfoliated morphology for the PSSA‐grafted MMT one. The effect of the nature of hydrophilic monomer on the grafting efficiency is discussed in detail. © 2013 Society of Chemical Industry  相似文献   

5.
This research studied the characteristics of poly(acrylamide) and methylcellulose (PAAm‐MC) hydrogels as a novel adsorbent material for removal of pesticide paraquat, from aqueous solution, with potential applications in curbing environmental risk from such herbicides. PAAm‐MC hydrogels with different acrylamide (AAm) and MC concentrations were prepared by a free‐radical polymerization method. The capability of the hydrogels in removing paraquat dichloride from aqueous solution was determined using UV–Vis analysis. The scanning electron microscopy method was used to study the morphological properties of the hydrogels, and swelling degree (Q) of the hydrogels was also measured. The entrapped MC in PAAm chains provoked significant changes in morphological, hydrophilic, and adsorption properties of the PAAm‐MC hydrogels. The adsorption capacity of hydrogels was strongly influenced by AAm, MC, and paraquat concentrations with the highest adsorption capacity (qeq = 14.3 mg g?1) was observed for hydrogels synthesized with 6.0% AAm with 0.75% MC swollen in 45.7 mg L?1 of paraquat solution. Freundlich model performed better than Langmuir model in describing the adsorption isotherm of PAAm‐MC/paraquat system, implying a heterogeneous surface. These results suggest that PAAm‐MC hydrogels are potentially viable absorbents for removal of paraquat pesticide from aqueous solution and cleaning water contaminated with dyes, heavy metals, and others pesticides. © 2009 Wiley Periodicals, Inc. Journal of Appl Polym Sci, 2009  相似文献   

6.
Preparation of hydrogels based on carboxymethyl cellulose (CMC) using direct radiation grafting technique for removal of organic contaminant such as 4‐chlorophenol and 2,4‐dichlorophenoxyacetic acid (2,4‐D) was carried out. The prepared hydrogels which are composed of individual radiation grafting of methacrylic acid onto CMC to form poly(CMC/MAA) the other hydrogel composed of binary acrylamide/methacrylic acid grafted onto CMC to form poly(CMC/MAA:AAm) hydrogels. The two selected composition poly(CMC/MAA:AAm) (1/60:40 wt%) poly(CMC/MAA) (1:20) wt% hydrogels due to its high chelating properties obtained from our previous work by the same authors. The properties of the selected two prepared hydrogels were evaluated by using different analytical tools such as Fourier transform infrared (FTIR), X‐ray diffraction (XRD), and thermogravimetric analysis (TGA). The gel (%) and the swelling behavior of poly(CMC/MAA:AAm) is higher than poly(CMC/MAAc) hydrogel. It is found that the adsorption capacity of poly(CMC/MAA) hydrogel (1:20 wt%) toward 4‐chlorophenol and 2,4 dichlorophenoxy acetic acid was higher than that of poly(CMC/MAA:AAm) (1/60:40 wt%) hydrogel. Also The obtained results showed that the adsorption capacity of both poly(CMC/MAA:AAm) (1/60:40 wt%) and poly(CMC/MAA) (1:20) wt% hydrogels toward 2,4 dichlorophenoxy acetic acid was higher than of 4‐chlorophenol. J. VINYL ADDIT. TECHNOL., 26:362–369, 2020. © 2019 Society of Plastics Engineers  相似文献   

7.
Poly(N‐isopropyl acrylamide) (PNIPAAm)‐graft‐poly(ethylene oxide) (PEO) hydrogels crosslinked by poly(?‐caprolactone) diacrylate were prepared, and their microstructures were investigated. The swelling/deswelling kinetics and compression strength were measured. The relationship between the structure and properties of hydrogel are discussed. It was found that the PEO comb‐type grafted structure reduced the thermosensitivity and increased the compression strength. The addition of poly(?‐caprolactone) (PCL) accelerated the deswelling rate of the hydrogels. Meanwhile, the entanglement of PCL chains restrained the further swelling of the network of gels. The PCL crosslinking agent and PEO comb‐type grafted structure made the behavior of the hydrogels deviate from the rubber elasticity equations. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

8.
BACKGROUND: As part of an ongoing research and development programme of our laboratory on functional modification of seaweed polysaccharides for preparing hydrogels with improved properties, we report herein the preparation of a robust hydrogel system based on grafting of agar and sodium alginate blend (Agar/Na‐Alg) with acrylamide (AAm) to obtain the copolymer Agar/Na‐Alg‐graft‐PAAm. RESULTS: A robust hydrogel system with superior absorbency and pH resistance has been developed based on a PAAm‐grafted seaweed polysaccharide blend of Agar/Na‐Alg. The blend (Agar/Na‐Alg) and grafted product (Agar/Na‐Alg‐graft‐PAAm) were evaluated using Fourier transform infrared spectroscopy, X‐ray diffraction, thermogravimetric analysis, swelling capacity, rheology and scanning electron microscopy. The swelling capacity of the grafted copolymer exhibited an enhancement over that of the blend from 14 to 24 g g?1 in acidic medium. The blend and grafted copolymer produced hydrogels with lower gelling points of 31 and 29 °C and gel strengths were 170 and 120 g cm?2, respectively. CONCLUSION: This study constitutes an example of value addition of seaweed polysaccharides targeting new applications. The copolymer hydrogel may be useful in health, personal care and agricultural applications. Copyright © 2007 Society of Chemical Industry  相似文献   

9.
Preparation and characterization of superabsorbent hydrogels obtained by radiation induced crosslinking of polyacrylamide (PAAm), poly(acrylic acid) (PAAc), poly(vinyl alcohol) (PVA), and potassium polyacrylate (PAAcK) were investigated individually and in (PAAm)–binary systems for possible uses in agricultural fields. The swelling of the investigated hydrogels was mainly related to the type of their hydrophilic functional groups and/or the presence of polarized charges. The preparation conditions, such as irradiation dose and hydrogel blend compositions, that influence the water absorbency of PAAm/PAAcK copolymers and alter their gel content and crosslinking density were investigated. The higher the irradiation dose, the higher the gel content, and the lower the water absorbency. PAAm/PAAcK copolymer, possessing pore structure and fast swelling, was prepared by mixing the hydrogel components with a gas‐forming agent, namely, ammonium carbonate. Studies were also made on the applications of such hydrogels to improve the physical and water retention properties of sandy soil for agricultural purposes. The effect of different types and amounts of hydrogels added to sandy soil on the emergence, vegetative growth, and wilting time of corn (Zea mays) plants was investigated. As the hydrogel level increased, the average of plant height, leaf width, total dry weight, corncob production, and time to wilt increased. The obtained results suggested that the PAAm/PAAcK hydrogels can improve sandy soil properties for cultivation, because they often absorb and keep water one thousand times more than their own weight, reduce watering frequency of the plants, and enhance water retention of soil matrix that results in an increase in plant growth and performance. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 93: 1360–1371, 2004  相似文献   

10.
Porous polyacrylamide (PAAm) hydrogels with enhanced mechanical properties and regular pore distribution have been synthesized by a unique and facile methodology, which involves formation of the hydrogel pores by leaching out chemically modified silica particles. To improve the pore distribution and mechanical properties of the hydrogel network, porogen particles have been modified with PAAm chains chemically attached to the silica surface. Grafting polymerization initiated by peroxide groups immobilized on the particle surface has been used for this modification. The grafted PAAm layer on the silica surface improves the dispersibility of the porogen material in the hydrogel composition, and simultaneously forms pore “walls” reinforcing the hydrogel network, after leaching out the silica particles. The proposed synthetic way for the development of porous hydrogels includes three steps: (i) tethering of PAAm chains to silica particles due to the grafting polymerization initiated by an adsorbed polyperoxide macroinitiator (PPM), (ii) simultaneous crosslinking of grafted PAAm chains and PAAm forming hydrogel network, and (iii) pore formation by leaching out silica particles in the presence of hydrofluoric acid. The PPM has been synthesized by a free radical copolymerization of the peroxide monomer (PM) N‐(tert‐butylperoxymethyl)acrylamide with acrylamide. Both PM and PPM have been developed in our lab, and applied for the synthesis of porous polymeric hydrogels. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

11.
Copolymer hydrogels were prepared through the γ irradiation of aqueous solutions composed of different ratios of acrylamide (AAm) and vinyl pyrrolidone (VP) monomers. The chemical structure, thermal stability, and structural morphology of the hydrogels were characterized with Fourier transform infrared spectroscopy, thermogravimetric analysis (TGA), and scanning electron microscopy, respectively. The IR spectroscopy analysis showed the formation of copolymerization and the presence of hydrogen bonding. The TGA study showed that the AAm/VP‐based hydrogels possessed higher thermal stability than polyacrylamide (PAAm). However, the thermal stability of the AAm/VP hydrogels increased with an increasing ratio of the VP component. The study of the swelling kinetics in water showed that all the hydrogels reached the equilibrium state after 24 h. However, the AAm/VP‐based hydrogels showed swelling in water that was lower than that of the hydrogel based on pure AAm. Meanwhile, the degree of swelling of the AAm/VP‐based hydrogels decreased with an increasing ratio of VP in the feeding solutions. The results showed that the PAAm and AAm/VP‐based hydrogels prepared at 50 kGy were affected by a change in the temperature around 25°C, whereas the hydrogels prepared at 25 kGy did not show this characteristic. However, the hydrogels prepared at different doses displayed reversible pH character. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007  相似文献   

12.
For to be used in controlled releasing of piperacillin‐tazobactam, a series of semi and full IPN type hydrogels composed of acrylic acid (AA), acrylamide (AAm) and Chitosan (CS) were prepared via free‐radical polymerization. Ethylene glycol dimethacrylate (EGDMA) was used for crosslinking of PAAm and PAA chains to form semi‐IPN hydrogels. However, the full‐IPN type hydrogels were prepared by using glutaraldehyde (GA) and EGDMA as cocrosslinkers. Characteristics of the hydrogels were investigated by swelling experiments and SEM and FTIR analysis. Generally, full‐IPN type hydrogels swell much more than the semi‐IPN types. By comparing the full‐IPN type hydrogels in between, it is found that the increasing amount of GA causes the decreasing in S% values from 4860 to 4300%. Releasing of piperacillin‐tazobactam from selected three hydrogels were investigated in phosphate buffer solution at pH = 7.4, 37°C. The kinetic release parameters, n and k were calculated and non‐Fickian type diffusion was established for these hydrogels. The behaviors of the piperacillin‐tazobactam loaded hydrogels in Staphylococcus aureus (S. aureus) and Pseudomonas aeruginosa (P. aeruginosa) culture suspensions were also studied and the statistically significant differences for the microorganism growth values were determined. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

13.
《分离科学与技术》2012,47(9):1322-1333
Ionic composite hydrogels based on polyacrylamide (PAAm) and dextran sulfate (DxS) have been prepared by radical polymerization at two temperatures: +20°C and ?18°C, using DxS as physical entrapped polymer, acrylamide (AAm) monomer, N,N’-methylenebis(acrylamide) (BAAm) as cross-linking agent, ammonium persulfate as radical initiator, and N,N,N’,N’-tetramethylethylenediamine as accelerator of free-radical polymerization. The PAAm/DxS composite hydrogels were tested as sorbents for Methylene Blue (MB) from aqueous solution by the batch procedure. The effect of contact time, initial dye concentration, and temperature on the dye sorption onto composite hydrogels has been investigated. The modeling of the experimental data by applying different kinetic and isotherm models was also performed.  相似文献   

14.
Acrylamide (AAm)/acrylic acid (AAc) hydrogels in the cylindirical form were prepared by γ‐irradiating binary systems of AAm/AAc with 2.6–20.0 kGy γ‐rays. The effect of the dose and relative amounts of AAc and pH on the swelling properties, diffusion behavior of water, diffusion coefficients, and network properties of hydrogel systems was investigated. The swelling capacities of AAm/AAc hydrogels were in the range of 1000–3000%, while poly(acrylamide) (PAAm) hydrogels swelled in the range of 450–700%. Water diffusion into hydrogels was found to be non‐Fickian‐type diffusion. Diffusion coefficients of AAm/AAc hydrogels were found between 0.79 × 10?5 and 2.78 × 10?5 cm2 min?1. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 86: 3570–3580, 2002  相似文献   

15.
In this study, Acrylic acid (AA)/2‐acrylamido‐2‐methlypropane sulfonic acid (AMPS) hydrogels were prepared by free radical polymerization in aqueous solutions of AA, AMPS, and N,N‐methylenebisacrylamide (NMBA) as crosslinker. Potassium persulfate (PPS)/potassium bisulfide (PBS) were used as initiator and accelerator pair. The water absorption capacities and dye adsorption properties of the hydrogels were investigated. Adsorption properties of the hydrogels were evaluated by depending on different adsorption conditions such as different initial dye concentration and contact time. The concentrations of the dyes were determined using UV/Vis Spectrophotometer at wavelength 530 nm for safranine T (ST) and 622 nm for brilliant cresyl blue (BCB). Adsorption kinetic studies showed that pseudo‐first order kinetic model is suitable to explain the adsorption kinetic data of the hydrogels. Langmuir and Freundlich isotherm models were used to describe adsorption data. The result revealed that the adsorption of basic dyes onto hydrogels fit very well both Langmuir and Freundlich isotherms. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

16.
Sodium carboxymethylcellulose/poly(methyl acrylate) (NaCMC/PMA) interpenetrating polymer networks (IPNs) were prepared by fractional step in 40 wt % ethanol solution with N,N′‐methylenebisacrylamide as a crosslinker. Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), and differential scanning calorimeter were used to characterize the NaCMC/PMA IPN hydrogels and confirm the IPN structure as well. Simultaneously, adsorption of the obtained IPN hydrogels to methylene blue (MB) was also investigated. It was observed that the adsorption of MB onto the hydrogels was mainly dependent on the initial concentration of MB and the pH of the solution. Adsorption rate of MB was much higher in the first 9 h than that in the following period and saturated adsorption amount of MB was 2370 mg/g at the initial MB concentration of 100 mg/L. Moreover, the adsorption capacity of the IPN hydrogels at the neutral pH condition is much higher than those at acid or alkaline pH conditions. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 41101.  相似文献   

17.
The blend membranes of sodium alginate (Na‐Alg) and poly(acrylamide)‐grafted guar gum (PAAm‐g‐GG) in the ratios of 3:1 and 1:1 were prepared and studied for the pervaporation separation of water–isopropyl alcohol mixtures over the entire range of mixture composition at 30°C. Membranes prepared from neat Na‐Alg (M‐1) and the 1:1 blend of Na‐Alg and PAAm‐g‐GG (M‐3) showed the highest separation selectivity for 10 mass % water in the feed mixture, whereas membranes prepared with the 3:1 blend ratio of Na‐Alg to PAAm‐g‐GG showed the highest separation selectivity of 20 mass % water in the feed. Selectivity decreased with increasing amount of water in the feed for all the membranes, but these values show an increase with increasing amount of grafted copolymer in the blend mixture. Flux increased with increasing amount of water in the mixture, but the flux values did not change markedly with the PAAm‐g‐GG content in the blend membrane at the lower mass % water. At higher mass % of water, the flux values of the blends increase systematically with increasing amount of PAAm‐g‐GG in the blend polymer. For the 10 mass %‐containing binary mixtures, the pervaporation separation experiments were performed at 30, 40, and 50°C, and the resulting data were used to calculate the Arrhenius activation parameters. These data indicated activated pore‐type diffusion of the permeants in the membranes. Dynamic sorption studies were also performed on up to 40 mass % water–isopropyl alcohol mixtures at 30°C. These results, when analyzed by the empirical equation, indicated Fickian transport in all the cases. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 85: 2014–2024, 2002  相似文献   

18.
In this study, we attempted the synthesis and characterization of novel biocompatible hydrogels of binary polymeric blends of crosslinked poly(acrylic acid) grafted onto poly(vinyl alcohol) and gelatin by a redox polymerization technique. The end polymer was characterized by IR spectral analysis, differential scanning calorimetry measurements, and scanning electron microscopy. The prepared smart, environment‐responsive hydrogels, containing polyelectrolyte domains, were assessed for their water sorption potential under various experimental conditions and were further used to evaluate important network parameters such as the crosslink density, number of elastically effective chains, and molecular mass between crosslinks. The diffusion mechanism of the solvent–polymer interaction was also analyzed to predict the behavior of continuously relaxing chains containing several carboxylate ions. The blood compatibility of premeditated hydrogels was also judged by in vitro methods such as protein adsorption, blood clot formation, and hemolysis percentage assay measurement. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 599–617, 2006  相似文献   

19.
Superadsorbent cellulose‐graft‐acrylic acid (C‐g‐AA) hydrogels were successfully prepared via free radical polymerization in phosphoric acid solution. Phosphoric acid solution provides a homogeneous reaction system. The C‐g‐AA hydrogels have a porous network inner structure with cellulose as the backbone. The introduced carboxyl groups enable the C‐g‐AA hydrogels with good swelling property (swelling ratio 7327%) and excellent MB adsorption capacity (equilibrium adsorption amount 2197 mg g?1). The dynamic swelling behaviors of the hydrogels were tested, water intake of hydrogels followed a non‐Fickian type diffusion. The effects of mole ratio of AA to cellulose, the pH of adsorption medium and the initial MB concentration on dye adsorption capacity of hydrogels were investigated. The adsorption isotherm and kinetics fit the Langmuir model and the Pseudo‐second‐order model well, respectively. Desorption was carried out in weak acid solution and 70% MB could be removed, suggesting the C‐g‐AA hydrogels had the potential for reuse. POLYM. ENG. SCI., 2011. © 2011 Society of Plastics Engineers  相似文献   

20.
A series of pH‐responsive hydrogels were studied as potential drug carriers for the protection of insulin from the acidic environment of the stomach before releasing in the small intestine. Hydrogels based on poly(vinyl alcohol) networks grafted with acrylic acid or methacrylic acid were prepared by a two‐step process. Poly(vinyl alcohol) hydrogels were prepared by gamma ray irradiation (50 kGy) and then followed by grafting either acrylic acid or methacrylic acid onto these poly(vinyl alcohol) hydrogels with subsequent irradiation (5–20 kGy). These graft hydrogels showed pH‐sensitive swelling behavior and were used as carriers for the controlled release of insulin. The in vitro release of insulin was observed for the insulin‐loaded hydrogels in a simulated intestinal fluid (pH 6.8) but not in a simulated gastric fluid (pH 1.2). The release behavior of insulin in vivo in a rat model confirmed the effectiveness of the oral delivery of insulin to control the level of glucose. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 91: 636–643, 2004  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号