首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Ethylene vinyl acetate (EVA)/epoxidized natural rubber (ENR) blends containing 10 and 30 wt % ENR were prepared by using an internal mixer. Five different types of curing systems were employed: dicumyl peroxide (DCP), sulfur (S), phenolic resin (Ph), DCP + S, and DCP + Ph. DCP could crosslink with both EVA and ENR while S and Ph were curing agents for ENR. The DCP system provided the lowest tensile properties and tear strength because of low crosslinking in ENR phase. Addition of sulfur or phenolic resin increased the mechanical properties due to a better vulcanization of the rubber phase. The mechanical properties of the blends decreased with increasing ENR content. The rubber particle size in the blends containing 30% ENR played a more important role in the mechanical properties than the blends containing 10% ENR. ENR particle size did not affect heat shrinkability of EVA and a well vulcanized rubber phase was not required for high heat shrinkage. Furthermore, heat shrinkage of the blends slightly changed as the ENR content increased for all curing systems. With regard to the mechanical properties and heat shrinkability, the most appropriate curing system was DCP + Ph and in the case the 10 wt % ENR content produced a more favorable blend. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

2.
Silicone rubber/ethylene vinyl acetate (SR/EVA) rubber mixes with different ratios were prepared by using dicumyl peroxide (DCP) and benzoyl peroxide (BP) as curing agents. The vulcanization characteristics such as cure kinetics, activation energy, and cure rate of the blends were analyzed. The effects of blend ratio and curing agents on the mechanical properties such as stress–strain behavior, tensile strength, elongation at break, tear strength, relative volume loss, hardness, flex crack resistance, and density of the cured blends have been investigated. Almost all the mechanical properties have been found to be increased with increase in EVA content in the blends particularly in DCP‐cured systems. The increment in mechanical properties of the blends with higher EVA content has been explained in terms of the morphology of the blends, attested by scanning electron micrographs. Attempts have been made to compare the experimental results, from the evaluation of mechanical properties, with relevant theoretical models. The aging characteristics of the cured blends were also investigated and found that both the DCP‐ and BP‐cured blends have excellent water and thermal resistance. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 99: 1069–1082, 2006  相似文献   

3.
Uncrosslinked and chemically crosslinked binary blends of low‐ and high‐density polyethylene (PE), with ethylene vinyl acetate copolymer (EVA), were prepared by a melt‐mixing process using 0–3 wt % tert‐butyl cumyl peroxide (BCUP). The uncrosslinked blends revealed two distinct unchanged melting peaks corresponding to the individual components of the blends, but with a reduced overall degree of crystallinity. The crosslinking further reduced crystallinity, but enhanced compatibility between EVA and polyethylene, with LDPE being more compatible than HDPE. Blended with 20 wt % EVA, the EVA melting peak was almost disappeared after the addition of BCUP, and only the corresponding PE melting point was observed at a lowered temperature. But blended with 40% EVA, two peaks still existed with a slight shift toward lower temperatures. Changes of mechanical properties with blending ratio, crosslinking, and temperature had been dominated by the extent of crystallinity, crosslinking degree, and morphology of the blend. A good correlation was observed between elongation‐at‐break and morphological properties. The blends with higher level of compatibility showed less deviation from the additive rule of mixtures. The deviation became more pronounced for HDPE/EVA blends in the phase inversion region, while an opposite trend was observed for LDPE/EVA blends with co‐continuous morphology. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 103: 3261–3270, 2007  相似文献   

4.
Effect of irradiation on mechanical and structural properties of ethylene vinyl acetate copolymers (EVA) hollow fibers was studied by the tests such as determination of gel content, density, tensile, FTIR, SEM, and DMA. These effects were discussed based on dose and irradiation environment. The results of gel content depicted that irradiated EVA in ambient conditions had tendency to chain scission while the crosslinking overcame in irradiated samples under nitrogen. Density insignificantly enhanced with irradiation dose. In tensile test, irradiation induced increase in tensile strength and decrease in elongation at break (especially in samples irradiated in nitrogen). Also, changing in layer orientation could be observed by SEM images. In addition, irradiation caused altering peak intensity in FTIR spectrum. DMA results demonstrated that irradiation broaden the elastic zone. Totally, irradiation enhances features especially in irradiated EVA18 in nitrogen. Since, according to stabilization of induced deformation and improvement of mechanical properties (that created by radiation), the irradiated samples can be used in different applications. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

5.
Two commercial polymer materials, metallocene linear low density polyethylene (m‐LLDPE) and ethylene/vinyl acetate copolymer (EVA) have been used to form binary blends of various compositions. The mechanical properties, morphology, rheological behavior, dynamic mechanical properties, and crystallization of m‐LLDPE/EVA blends were investigated. It was found that with the addition of EVA, the fluidity and processability of m‐LLDPE were significantly improved, and the introduction of polar groups in this system showed no significant changes in mechanical properties at lower EVA content. As verified by morphology observation and differential scanning calorimetry analysis, miscible blends were formed within certain weight ratios. Dynamic mechanical property studies showed that flexibility of the blends was enhanced in comparion with pure m‐LLDPE, where the peak value of loss modulus shifted to lower temperature and its intensity was enhanced as EVA content increased, indicating the existence of more amorphous regions in the blends. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 91: 905–910, 2004  相似文献   

6.
Preferential crosslinking was introduced in the rubber phase of a blend of ethylene vinyl acetate (EVA) and polyacrylic rubber (AR‐801). The heat shrinkability of the polymer blends was measured at room temperature (RT) and at a high temperature (HT) of 150°C. Various parameters were tried for a correlation with shrinkability. Shrinkability goes up with the increase in rubber content and is increased with increasing cure time in blends of a fixed ratio. The crystallinity of an HT (at 150°C) stretched sample was higher than that of a RT stretched sample, which was higher than that of the shrunk and original sample. The continuous cure characteristics, showed that the torque was increased with the rubber content. High temperature DSC demonstrated that the increase in AR‐801 content decreased the stability and further HT processing increased the stability. SEM showed that the rubber phase was more elongated in the HT stretched sample compared to the RT stretched sample. In the shrunk sample the rubber phase was more globular. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 77: 2088–2095, 2000  相似文献   

7.
为了持续满足用户新产品研发对聚丙烯腈纤维的缩率值提出的更高要求,研究了第二单体醋酸乙烯酯及其含量对聚丙烯腈纤维缩率的影响。结果表明,聚丙烯腈纤维中醋酸乙烯酯及其含量(推荐的中心值10.95%+0.6max.%)是影响缩率的最重要因素。  相似文献   

8.
A series of poly(methyl methacrylate) (PMMA) blends have been prepared with different compositions viz., 5, 10, 15, and 20 wt % ethylene vinyl acetate (EVA) copolymer by melt blending method in Haake Rheocord. The effect of different compositions of EVA on the physico‐mechanical and thermal properties of PMMA and EVA copolymer blends have been studied. Differential scanning calorimetry (DSC), dynamic mechanical analysis (DMA) and thermogravimetric analysis (TGA) has been employed to investigate the phase behavior of PMMA/EVA blends from the point of view of component specific interactions, molecular motions and morphology. The resulting morphologies of the various blends also studied by optical microscope. The DSC analysis indicates the phase separation between the PMMA matrix and EVA domains. The impact strength analysis revealed a substantial increase in impact strength from 19 to 32 J/m. The TGA analysis reveals the reduction in onset of thermal degradation temperature of PMMA with increase in EVA component of the blend. The optical microscope photographs have demonstrated the PMMA/EVA system had a microphase separated structure consisting of dispersed EVA domains within a continuous PMMA matrix. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007  相似文献   

9.
An intumescent flame retardant (IFR) system was prepared by 2 ways. Firstly, bis(2,6,7‐trioxa‐1‐phosphabicyclo[2,2,2]octane‐1‐oxa‐4‐hydroxymethyl) phosphonate methyl (bis‐PM) was synthesized and characterized by 1H nuclear magnetic resonance (NMR), 31P NMR, and Fourier transform infrared spectroscopies. This carbonization agent was mixed with melamine (ME), ammonium polyphosphate (APP), and pentaerythritol (PER) to constitute an IFR system. Secondly, an IFR system by reaction was prepared by reaction, and the presence of compositions in product was confirmed by 1H NMR and Fourier transform infrared. Both of systems enhanced the flammable retardation of ethylene vinyl acetate (EVA) and polypropylene (PP). Flammability and thermal behaviors of IFR‐EVA and IFR‐PP were investigated by vertical burning test (UL‐94 V) and thermogravimetric analysis. Results indicated that the IFR systems performed excellent flame retardancy and antidripping ability for PP. At 30 wt% loading, the optimum flame retardant formulations that are bis‐PM/ME: 4/1, bis‐PM/ME/PER: 3/1/1, APP/ME/PER: 3/1/1, and bis‐PM/ME/PER/APP: 1.5/1.5/1/1 give UL‐94 V‐0 rating. However, V‐0 rating results were only obtained for EVA when systems contain bis‐PM/ME: 4/1 and bis‐PM/ME/PER: 3/1/1. The char yield from decomposition of the IFR‐EVA and IFR‐PP has effects on the flame retardancy and antidripping behaviors of EVA and PP.  相似文献   

10.
This article focuses on unique compounding and processing conditions at a temperature slightly below the melting temperature of the dispersed phase and well above the melting peak temperature of the matrix. Compounding and processing were carried out at the same temperature. Fibrillar morphologies were obtained by blending ethylene vinyl acetate (EVA) copolymer with nylon 6 (N6) and compounding and processing them slightly below the N6 melting temperature. A hot, soft-solid particle drawing mechanism that operates in such processing conditions caused fibrillation of the N6 particles and formation of highly oriented fibril-filled composites throughout the entire volume. Morphological observations were made in the core region. Enhancement of some mechanical properties and interesting morphological structures were found in some of the blends. The melt elasticity, which was measured by the die swell of the filaments, was maximum at a temperature slightly below the N6 melting temperature, which supported the concept of fibrillation by processing it slightly below the melting temperature of the dispersed phase. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 82: 661–671, 2001  相似文献   

11.
采用红外光谱法测定了氯乙烯-醋酸乙烯酯共聚糊树脂中醋酸乙烯酯的含量,并与热重法、化学分析法等分析方法进行了比较。指出氯乙烯-醋酸乙烯酯共聚糊树脂中醋酸乙烯酯含量的多种测定方法各有其特点,需要根据实际情况选用;红外光谱法快速、准确,可满足企业科研和生产所需。  相似文献   

12.
Polylactic acid/ethylene glycol triblock copolymer (LLA46EG46LLA46) was prepared and used in a crosslink process of epoxidized natural rubber (ENR) by employing a ring‐opening reaction using Sn(Oct)2 as a catalyst. The OH‐capped copolymer acts as a macromolecular crosslinking agent in the formation of ENR networks, leading to drastic enhancement in tensile properties. Crosslink efficiency and chemical structures of the cured materials are examined by solvent fractionation, swelling experiments, XRD, 1H‐NMR, and ATR‐FTIR spectroscopy. The efficiency of the curing process is dependent on the ENR/copolymer feed ratios. The degree of property improvement and gas permeability/selectivity behaviors of the cured materials are strongly dependent on the copolymer content and the efficiency of the curing process. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

13.
The irradiation‐induced crosslinking in 50/50 poly(vinyl chloride)/epoxidized natural rubber (PVC/ENR) blend was investigated by means of dynamic mechanical analysis. The influence of trimethylolpropane triacrylate on the irradiation‐induced crosslinking of PVC/ENR blends was also studied. The enhancement in storage modulus and Tg with irradiation dose indicated the formation of irradiation‐induced crosslinks. This is further supported by the decrease in tan δmax and loss modulus peak. The compatibility of the blend was found to be improved upon irradiation. The Fox model was used to provide a further insight into the irradiation‐induced compatibility in the blend. Scanning electron microscopy studies on the cryofracture surface morphology of the blends as well as the homopolymer have been undertaken in order to gain more evidence on the irradiation‐induced crosslinking. © 2001 Society of Chemical Industry  相似文献   

14.
Ethylene vinyl acetate copolymer (EVA) and monmorillonite (MMT) nanocomposites have been investigated as a function of vinyl acetate content and molecular weight of EVA and types of substituted alkyl ammonium of MMT. It is found that vinyl acetate content and type of substituted alkyl ammonium are important factors for the intercalation behaviour of MMT in MMT/EVA nanocomposite. Maleic anhydride grafted high‐density polyethylene was used as a compatibilizer to improve the intercalation behaviour of MMT. X‐ray diffraction and transmission electron microscopy were used to characterize the intercalation/exfoliation behaviour, and mechanical properties were measured. © 2003 Society of Chemical Industry  相似文献   

15.
以乙烯⁃醋酸乙烯酯共聚物(EVA)为原料,过氧化2⁃乙基己基叔丁酯(TBPE)为交联剂,合成了交联EVA双向形状记忆聚合物(SMP),并且考察了TBPE含量对于交联EVA性能的影响。结果表明,交联EVA的TmTc随着TBPE含量的上升呈现下降的趋势,可以通过交联剂比例调节材料的驱动温度;交联EVA的形状固定率会随着TBPE含量的增加呈现下降趋势,最低达到88.83 %,而样品的形状恢复率均超过99 %,并且都具有单向和双向形状记忆功能;交联EVA也具有双向记忆性能,Ra,2W随着TBEC的含量增大而减小,Rr,2W则相反;因此,通过改变交联剂EVA的量,对于双向交联EVA的性能有较大影响。  相似文献   

16.
Y.T. Sung  H.S. Lee  H.G. Yoon 《Polymer》2005,46(25):11844-11848
Effects of crosslinking and crystallinity on the properties of the thermal and rheological properties of the EVA were studied. From the studies of storage modulus of the EVA with VA content in the solid temperature range (about −70 to 50 °C), the storage modulus decreased with increasing the VA content. This result suggested that the crystallinity of the EVA affected the storage modulus of the EVA because of the weak crosslinking of the EVA by DCP. From the studies of complex viscosity of the EVA with and without DCP in the melt state, the values of the power law parameter of the EVA without DCP ranged from 0.39 to 0.50 and the EVA with DCP ranged from 0.03 to 0.12. In the measurement of the complex viscosity of the EVA in the melt state, the crosslinking affected the complex viscosity of the EVA with DCP.  相似文献   

17.
Polymer blend technology has been widely used for the past several years for the modification or enhancement of mechanical properties of polymers to obtain an overall balance of properties over those of the constituents. Despite its interesting mechanical and thermal properties, the impact strength of polypropylene leaves wide scope for improvement. A series of blends of ethylene vinyl acetate (EVA) copolymer with an impact grade of isotactic polypropylene (i‐PP) were prepared by single screw extrusion at 0–0.32 volume fraction of the dispersed phase. The mechanical properties such as tensile behavior, elongation‐at‐break, and impact strength of these blends systems as well as crystallinity were evaluated. Crystallinity data have been used in greater depth to support the mechanical properties. Differential scanning calorimetry studies conducted to study the modification in crystallinity of the crystalline component, i‐PP, of the blend revealed that the rubber component of the blend enhanced the crystallinity of i‐PP phase by providing sites for nucleation. Tensile modulus and strength decreased while the impact strength and breaking elongation enhanced with blending elastomer concentration. The improved properties of these PP/EVA blends are encouraging for carrying out further work on this system (composites) and suggest potential high impact strength applications for PP. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

18.
乙烯基含量对热硫化硅橡胶抗撕裂性能的影响   总被引:2,自引:0,他引:2  
郭建华  曾幸荣  罗昆 《弹性体》2010,20(5):6-10
研究不同乙烯基含量对热硫化硅橡胶的力学性能尤其是抗撕裂性能的影响,采用平衡溶胀法测定硅橡胶的交联密度,研究不同乙烯基含量的硅橡胶并用胶的撕裂强度和交联密度的关系。结果表明,随着硅橡胶乙烯基含量的增大,硅橡胶硫化胶的断裂伸长率减小,300%定伸应力和硬度升高,当乙烯基摩尔分数为0.15%时,撕裂强度和拉伸强度较高。乙烯基摩尔分数为0.15%的硅橡胶和乙烯基摩尔分数为0.06%的硅橡胶并用,当并用比为50/50时,撕裂强度高达45.8 kN/m,乙烯基摩尔分数为0.30%的硅橡胶和乙烯基摩尔分数为0.06%的硅橡胶并用,当并用比为4/96时,撕裂强度可达42.9kN/m。乙烯基摩尔分数为0.30%的硅橡胶和乙烯基摩尔分数为0.15%的硅橡胶并用,并用比对硫化胶的撕裂强度影响不大。高乙烯基含量和低乙烯基含量的硅橡胶并用,有利于使硅橡胶的交联结构由"分散交联"转变为"集中交联",当并用胶的乙烯基摩尔分数在0.15%以内,硅橡胶并用胶的撕裂强度随乙烯基摩尔分数的增加而先增大后降低,而此时并用胶的交联密度与撕裂强度成反比。  相似文献   

19.
This work reports the study of the addition of isopropanol on controlled release of ibuprofen from ethylene vinyl acetate (EVAc) copolymer membranes. An EVAc solution in cyclohexane (4% w/v) containing triethyl citrate (7% w/v) as plasticizer was mixed with ibuprofen at three different concentrations of 4, 6, and 8%. Isopropanol was mixed with each of the previous mixtures to form solutions of 1, 3, and 5% isopropanol concentrations. Samples were solvent cast on glass petri‐dishes to form membranes. Home‐made diffusion cells were used for in vitro study. These cells were composed of two compartments, donor (exposed to ambient conditions), and receptor (including buffer solution maintained at 37°C). Each cell was equipped with a sampling port and water in and out system. An ultraviolet spectrometer at 222 nm was used to measure release rates of obtained membranes. The diffusion mechanism for drug release was examined by zero‐order, first‐order, Higuchi and Korsmeyer‐Peppas theories to confirm the obtained membranes follow the matrix‐type system. By increasing the drug concentration from 4 to 8%, drug release (cumulative amount) was improved from 20 (47.5%) to 30 (36%) μg/cm2 after 24 h. Addition of 5% isopropanol to the above samples (4 and 8% loading) further increased drug release to 24 and 43 μg/cm2. Results were in good agreement with the Korsmeyer‐Peppas theory for samples with 4 (% w/w) of ibuprofen. The highest percentage of drug release after 24 h was 59% for the sample with 4% drug loading compared to 50% for the sample with 8% drug loading, both with 5% isopropanol. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

20.
—Contact angle studies of miscible poly(vinyl chloride)/epoxidized natural rubber (PVC/ ENR) blends were carried out in air using water and methylene iodide. The solid surface free energy was calculated from harmonic mean equations. Blending of PVC and ENR decreased their contact angle or increased their solid surface free energy due to the improved chain mobility, and the accumulation of excess polar sites at the surface through conformational alterations resulting from the specific interaction of PVC and ENR. The work of adhesion, interfacial free energy, spreading coefficient, and Girifalco-Good's interaction parameter changed markedly with the blend composition. In blends, PVC and ENR improved hydrophilicity, and wettability with polar and non-polar liquids. The presence of a plasticizer in PVC, in general, further improved the wettability and hydrophilicity in blends.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号