首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In order to simulate gas-solids flows with complex geometry, the boundary element method was incorporated into the implementation of a combined model of computational fluid dynamics and discrete element method. The resulting method was employed to simulate hydrodynamics in a fluidized bed with immersed tubes. The transient simulation results showed particle and bubble dynamics. The bubble coalescence and break-up behavior when passing the immersed tubes was successfully predicted. The gassolid flow pattern in the fluidized bed is changed greatly because of the immersed tubes. As particles and gas are come in contact with the immersed tubes, the gas bubbles will be deformed. The collisions between particles and tubes will make the tubes surrounded by air pockets most of the time and this is unfavorable for the heat transfer between particles and tubes. __________ Translated from Chemical Engineering, 2007, 35(11): 21–24 [译自:化学工程]  相似文献   

2.
赵永志  程易 《化学工程》2007,35(11):21-24
为模拟具有复杂几何结构的气固流动系统,文中将计算流体力学和离散单元法与边界元方法结合起来,对沉浸管式流化床内颗粒及气泡的运动行为进行了数值模拟。模拟计算得到的瞬态流型图揭示了气泡绕流沉浸管束时出现的合并和破碎状态及颗粒群的详细运动行为,发现床内气固二相的流动受到沉浸管束存在的显著影响。当颗粒及气相的流动受到沉浸管的阻碍而绕管流动过程中气泡会发生变形,变得扭曲狭长且易被撕碎。同时颗粒与管道壁面碰撞会造成气固二相复杂的动态运动形式,床内的管道大部分时间会被气穴包围,将严重阻碍管道与颗粒之间的传热。  相似文献   

3.
The transient process of heat transfer between a high‐temperature emulsion packet and the wall of an immersed surface is simulated using computational fluid dynamics (CFD). From these simulations, the total heat transfer coefficient and its radiant contribution due to the emulsion (dense) phase are evaluated. The results are compared with experimental data (Ozkaynak et al., “An experimental investigation of radiant heat transfer in high temperature fluidized beds,” in Fluidization IV, 1983:371–378) and with predicted values from the generalized heterogeneous model (GHM), (Mazza et al., “Evaluation of overall heat transfer rates between bubbling fluidized beds and immersed surfaces,” Chem Eng Commun., 1997;162:125–149). The CFD simulations are in good agreement with both, experimental data and theoretical GHM predictions and provide a reliable way to quantify the studied heat transfer process. Also, the GHM is validated as a practical tool to this end. © 2011 American Institute of Chemical Engineers AIChE J, 58: 412–426, 2012  相似文献   

4.
The erosion of the immersed tubes in a bubbling‐fluidized bed is studied numerically using an Eulerian–Lagrangian approach coupling with a particle‐scale erosion model. In this approach, the motion of gas and particles is simulated by the CFD–DEM method, and an erosion model SIEM (shear impact energy model) is proposed to predict the erosion of the tubes. The model is validated by the good agreement of the simulation results and previous experimental data. By analyzing the simulation results, some characteristics of the tube erosion in the fluidized bed are obtained, such as the distribution of the erosion rate around the tube, the variation of the erosion rate with the position of the tube, the effect of the friction coefficient of particles on the erosion, the relationship between the maximum and the average erosion rate, etc. The microscale behavior of particles around the tubes is also revealed and the linear relationship between the erosion and the shear impact energy is confirmed by the simulation results and experiment. The agreement between simulation and experiment proves that the microscale approach proposed in this article has high accuracy for predicting erosion of the tubes in the fluidized bed, and has potential to be applied to modeling the process in other chemical equipment facing solid particle erosion. © 2016 American Institute of Chemical Engineers AIChE J, 63: 418–437, 2017  相似文献   

5.
将有限元方法、基于非结构化网格的计算流体力学方法与离散单元法结合,建立了CFD-DEM-FEM耦合方法,并在此基础上采用k-ε湍流模型及考虑颗粒间及气固间作用的多向耦合传热模型,对埋管流化床内的流动和传热行为进行了模拟和分析.通过计算结果从微观尺度探讨了埋管流化床内的传热机制,分析了影响床内传热的关键因素,得到了换热管道周围固含率和传热系数的分布规律,考察了颗粒直径对埋管周围传热系数的影响.数值模拟结果与实验数据基本一致,证实了CFD-DEM-FEM耦合方法模拟复杂气固流动和传热的可行性和准确性.  相似文献   

6.
The discrete element method combined with computational fluid dynamics was coupled with a capillary liquid bridge force model for computational studies of mixing behaviors in gas fluidized bed systems containing wet granular materials. Due to the presence of strong capillary liquid bridge forces between wet particles, relative motions between adjacent particles were hindered. There was a high tendency for wet particles to form large aggregates within which independent motions of individual particles were limited. This resulted in much lower mixing efficiencies in comparison with fluidization of dry particles. Capillary liquid bridge forces were on average stronger than both fluid drag forces and particle–particle collision forces and this accounted for the difficulty with which individual particles could be removed and transferred between aggregates. Such exchange of particles between aggregates was necessary for mixing to occur during fluidization of wet granular materials but required strong capillary liquid bridge forces to be overcome. © 2013 American Institute of Chemical Engineers AIChE J, 59: 4058–4067, 2013  相似文献   

7.
The approach of combined discrete particle simulation (DPS) and computational fluid dynamics (CFD), which has been increasingly applied to the modeling of particle‐fluid flow, is extended to study particle‐particle and particle‐fluid heat transfer in packed and bubbling fluidized beds at an individual particle scale. The development of this model is described first, involving three heat transfer mechanisms: fluid‐particle convection, particle‐particle conduction and particle radiation. The model is then validated by comparing the predicted results with those measured in the literature in terms of bed effective thermal conductivity and individual particle heat transfer characteristics. The contribution of each of the three heat transfer mechanisms is quantified and analyzed. The results confirm that under certain conditions, individual particle heat transfer coefficient (HTC) can be constant in a fluidized bed, independent of gas superficial velocities. However, the relationship between HTC and gas superficial velocity varies with flow conditions and material properties such as thermal conductivities. The effectiveness and possible limitation of the hot sphere approach recently used in the experimental studies of heat transfer in fluidized beds are discussed. The results show that the proposed model offers an effective method to elucidate the mechanisms governing the heat transfer in packed and bubbling fluidized beds at a particle scale. The need for further development in this area is also discussed. © 2009 American Institute of Chemical Engineers AIChE J, 2009  相似文献   

8.
垂直管内三相流化床沸腾传热特性   总被引:14,自引:1,他引:14  
研究了三相流化床沸腾传热的特性和影响传热系数的诸因素。在传热过程中,由于固体粒子的存在,强化了传热。以玻璃球粒子为固相的三相流化床沸腾传热系数,是相同条件下汽液两相流沸腾传热的二倍。以铜粒子为固相的三相流化床沸腾传热系数,是相同条件下汽液两相流沸腾传热系数的3倍。  相似文献   

9.
10.
在二维振动流化床中,以平均粒径1.83 mm的玻璃珠为物料,研究了大颗粒与水平管间局部传热规律;考察了气速、振动频率等因素对局部传热系数的影响,同时与小米和小玻璃珠实验结果进行对比。结果表明:大颗粒与小颗粒局部传热系数有很大差异;对于大颗粒,低速下局部传热系数随振动频率的增大先增加后减小,高速下局部传热系数随着振动频率的增加而降低;一定振动频率下,气速小时局部传热系数在60°左右达到最大,气速逐渐增加后,其最大值向90°转移。通过实验数据得到了计算大颗粒与水平管局部传热系数的关联式,计算值与实验值吻合较好,误差在±20%范围内。结果可为带浸没水平管的振动流化床设计和研究提供参考。  相似文献   

11.
朱学军  叶世超  吕芹 《化学工程》2007,35(12):18-21
采用带浸没加热管的惰性粒子振动流化床对膏状物料干燥进行了实验研究。考察了加料速率、进气温度、进气速度、加热管功率、振动强度等参数对床温和体积传热系数的影响,得出了计算体积传热系数的关联式。结果表明,在流化床中增设振动和浸没加热管装置,能大大强化传热传质,体积传热系数随加料量、振动强度、加热管功率、进风速度的增加而增大,随进气温度的增加而减小。其结果对惰性粒子流化床干燥器的设计和改进具有重要的指导意义。  相似文献   

12.
In past decades, the continuum approach was the only practical technique to simulate large‐scale fluidized bed reactors because discrete approaches suffer from the cost of tracking huge numbers of particles and their collisions. This study significantly improved the computation speed of discrete particle methods in two steps: First, the time‐driven hard‐sphere (TDHS) algorithm with a larger time‐step is proposed allowing a speedup of 20–60 times; second, the number of tracked particles is reduced by adopting the coarse‐graining technique gaining an additional 2–3 orders of magnitude speedup of the simulations. A new velocity correction term was introduced and validated in TDHS to solve the over‐packing issue in dense granular flow. The TDHS was then coupled with the coarse‐graining technique to simulate a pilot‐scale riser. The simulation results compared well with experiment data and proved that this new approach can be used for efficient and reliable simulations of large‐scale fluidized bed systems. © 2017 American Institute of Chemical Engineers AIChE J, 63: 5320–5334, 2017  相似文献   

13.
将基于能量最小多尺度方法(EMMS)的曳力模型耦合到双流体模型中,并针对循环流化床内的气固两流动进行了模拟研究。采用全滑移壁面边界条件处理颗粒相,考察了3种网格尺度对轴向空隙率和出口颗粒循环量等气固流动特性的影响。计算结果表明,应用EMMS曳力模型处理相间作用力,同时在采用全滑移壁面边界条件处理颗粒相时,双流体模型能够正确预测轴向空隙率分布。采用网格尺寸为2.325 mm×20 mm时,模拟结果和实测数据吻合较好,表明在循环流化床的数值模拟中选择恰当的网格尺度是极为重要的。  相似文献   

14.
A combined approach of discrete particle simulation and computational fluid dynamics is used to study the heat transfer in a fluidized bed with a horizontal tube. The approach is first validated through the good agreement between the predicted distribution and magnitude of local heat transfer coefficient with those measured. Then, the effects of inlet fluid superficial velocity, tube temperature and main particle properties such as particle thermal conductivity and Young's modulus are investigated and explained mechanistically. The relative importance of various heat transfer mechanisms is analyzed. The convection is found to be an important heat transfer mode for all the studied conditions. A large convective heat flux corresponds to a large local porosity around the tube, and a large conductive heat flux corresponds to a large number of particle contacts with the tube. The heat transfer is enhanced by the increase of particle thermal conductivity while it is little affected by Young's modulus. Radiative heat transfer becomes increasingly important as the tube temperature is increased. The results are useful for temperature control and structural design of fluidized beds. © 2011 American Institute of Chemical Engineers AIChE J, 2012  相似文献   

15.
Experiments were conducted in a bubbling air-fluidized bed to investigate the effect of annular fins of constant thickness on heat transfer. Steady state time averaged local heat transfer coefficient measurements were made by the local thermal simulation technique in a cold bubbling fluidized bed (90 mm ID, 260 mm tall) with horizontally immersed tube initially with no fin and then with three fixed annular fins of constant thickness. Silica sand of mean particle diameter 307 μm and 200 μm were used as the bed materials. The superficial velocity of air was from minimum fluidization conditions, umf, to approximately 3 × umf. The results indicate that, although the heat transfer coefficient falls with the use of fins, the total heat transfer rises as a result of the greater surface area. Increasing the particle diameter reduces the heat transfer coefficient not only for unfinned horizontal tube but also for annular finned horizontal tube at the same conditions of fluidized bed. Based on the experimental data, correlations are proposed for predicting heat transfer coefficient from fluidized bed to horizontally immersed tubes with and without fins.  相似文献   

16.
A two dimensional Eulerian–Eulerian simulation of tube-to-bed heat transfer is carried out for a cold gas fluidized bed with immersed horizontal tubes. The horizontal tubes are modelled as obstacles with square cross section in the numerical model. Simulations are performed for two gas velocities exceeding the minimum fluidisation velocity by 0.2 and 0.6 m/s and two operating pressures of 0.1 and 1.6 MPa. Local instantaneous and time averaged heat transfer coefficients are monitored at four different positions around the tube and compared against experimental data reported in literature. The effect of constitutive equations for the solid phase thermal conductivity on heat transfer is investigated and a fundamental approach to modelling the solid phase thermal conductivity is implemented in the present work. Significant improvements in the agreement between the predicted and measured local instantaneous heat transfer coefficients are observed in the present study as compared to the previous works in which the local instantaneous heat transfer coefficients were overpredicted. The local time averaged heat transfer coefficients are within 20% of the measured values at the atmospheric pressure. In contrast, underprediction of the time averaged heat transfer coefficient is observed at the higher pressure.  相似文献   

17.
Numerical simulations of a gas‐particle‐droplet system were performed using an Euler‐Lagrange approach. Models accounting for (1) the interaction between droplets and particles, (2) evaporation from the droplet spray, as well as (3) evaporation of liquid from the surface of non‐porous particles were considered. The implemented models were verified for a packed bed, as well as other standard flow configurations. The developed models were then applied for the simulation of flow, as well as heat and mass transfer in a fluidized bed with droplet injection. The relative importance of droplet evaporation vs. evaporation from the particle surface was quantified. It was proved that spray evaporation competes with droplet deposition and evaporation from the particle surface. Moreover, we show that adopting a suitable surface coverage model is vital when attempting to make accurate predictions of the particle's liquid content. © 2017 American Institute of Chemical Engineers AIChE J, 63: 2569–2587, 2017  相似文献   

18.
叶锐  朱学军  叶世超 《化学工程》2007,35(11):17-20
为了深入研究振动流化床浸没水平管的传热特性,分别以沙子和玉米细颗粒作为实验物料,用水平探头测定了振动流化床中这2种床层颗粒与浸没水平管间的传热系数,分析了操作气速、振动频率、空气进口温度等因素对传热过程的影响。结果表明:在低气速下,振动是影响振动流化床中传热的主要因素,振动的引入可以明显改善流化作用,可以在低气速下得到较好的传热效果,同时达到节能的效果。通过分析实验结果,建立了振动流化床的传热关联式,模型计算值与实测值能较好吻合。研究结果可为干燥膏状物料时确定适宜的操作参数提供参考。  相似文献   

19.
Bed‐to‐wall heat transfer properties of a vertical heat tube in a fluidized bed of fine fluid catalytic cracking (FCC) particles are measured systematically using a specially designed heat tube. Two important surface hydrodynamic parameters, i.e. the packet fraction (δpa) and mean packet residence time (τpa) based on the packet renewal theory, are determined by an optical fiber probe and a data processing method. The experimental results successfully reveal the axial and radial profiles of heat‐transfer coefficient, the effects of superficial gas velocity, and static bed height on heat‐transfer coefficient, most of which can be explained successfully by the measured τpa, an indicator of packet renewal frequency. τpa is found to play a more dominant role than δpa on bed‐to‐wall heat transfer. With a fitted correction factor, the modified Mickley and Fairbanks model is able to predict the heat‐transfer coefficients with enough accuracy based on the determined packet parameters. © 2014 American Institute of Chemical Engineers AIChE J, 61: 68–83, 2015  相似文献   

20.
To investigate the interplay between particle charging and hydrodynamics in fluidized beds, models for triboelectric charging and electrostatic forces were built into a computational fluid dynamics‐discrete element method model. Charge transfer was governed by the difference in effective work function between contacting materials as well as the electric field at the point of contact. Monodisperse particles were fluidized with an effective work function difference between the particles and the conducting walls. For smaller work function differences, hydrodynamics were not changed significantly as compared with an uncharged case. In these simulations, the average charge saturated at a value much lower than the value anticipated based on the work function difference, and a unimodal distribution of charges was observed. For larger work function differences, particles stuck to walls and bed height oscillations due to slugging were less pronounced. For these cases, a bimodal distribution of charges emerged due to effects from strong electric fields. © 2016 American Institute of Chemical Engineers AIChE J, 63: 1872–1891, 2017  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号