首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Polysaccharide based graft copolymer (xanthan gum‐g‐4‐vinyl pyridine) was synthesized using potassium peroxymonosulphate/ascorbic acid redox initiator in inert atmosphere at 40°C. By studying the effect of the concentration of monomer, peroxymonosulphate (PMS), ascorbic acid (AA), xanthan gum (XOH), hydrogen ion along with effect of time and temperature on grafting characteristics: grafting ratio (%G), add on (%A), conversion (%C), efficiency (%E), homopolymer (%H), and rate of grafting (Rg), the reaction conditions for optimum grafting were determined. The optimum concentration of AA, H+ ion, 4‐VP for maximum grafting were found to be 10.0 × 10?3 mol dm?3, 2.5 × 10?2 mol dm?3, 10.0 × 10?3 mol dm?3, respectively. Maximum %G was obtained at minimum concentration of xanthan gum i.e., at 40.0 × 10?2 g dm?3 and at maximum concentration of PMS i.e., at 10.0 × 10?3 mol dm?3. The optimum temperature and time duration of reaction for maximum % of grafting were found to be 45°C and 120 min respectively. The synthesized graft copolymer was characterized by FTIR analysis. Thermogravimetric analysis showed that the xanthan gum‐g‐4‐vinyl pyridine is thermally more stable than pure gum. A probable mechanism was suggested for the graft copolymerization. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

2.
Unreported graft copolymer of N,N′‐dimethylacrylamide (DMA) with partially carboxymethylated guar gum (CmgOH) has been synthesized and the reaction conditions have been optimized for affording maximum grafting using a potassium peroxymonosulphate (PMS)/thiourea (TU) redox initiators under nitrogen atmosphere. The study of graft copolymerization has been performed to observe maximum value of grafting parameters except percentage of homopolymer by varying the concentrations of DMA, PMS, and TU. The grafting parameters increase continuously on increasing the concentration of DMA from 8 × 10?2 to 24 × 10?2 mol dm?3, PMS from 5 × 10?3 to 21 × 10?3 mol dm?3, and TU from 1.6 × 10?3 to 4.8 × 10?3 mol dm?3. The optimum temperature and time for grafting of DMA onto CmgOH were found to be 35°C and 120 min, respectively. The water‐swelling capacity of graft copolymer is investigated. Flocculation property for both coking and noncoking coals is studied for the treatment of coal mine waste water. The graft copolymer is characterized by Fourier transform infrared spectroscopy and thermogravimetric analysis. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

3.
A xanthan gum‐gN‐vinyl formamide graft copolymer was synthesized through the graft copolymerization of N‐vinyl formamide (NVF) onto xanthan gum with an efficient system, that is, potassium monopersulfate (PMS)/Ag(I) in an aqueous medium. The effects of the concentrations of Ag(I), PMS (KHSO5), hydrogen ion, xanthan gum, and NVF along with the time and temperature on the graft copolymerization were studied by the determination of the grafting parameters (grafting ratio, add‐on, conversion, grafting efficiency, and homopolymer) and the rate of grafting. The maximum grafting ratio was obtained at a 0.6 g/dm3 concentration of xanthan gum. All the parameters showed an increasing trend with an increasing concentration of peroxymonosulfate, except the homopolymer percentage, which showed a decreasing trend. The grafting ratio, add‐on conversion, grafting efficiency, and rate of grafting increased with the concentration of Ag(I) increasing from 0.8 × 10?2 to 1.2 × 10?2 mol/dm3. The optimum time and temperature for the maximum degree of grafting were 90 min and 35°C, respectively. The graft copolymer was characterized with IR spectral analysis, thermogravimetric analysis, and differential calorimetry analysis. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 101: 1637–1645, 2006  相似文献   

4.
A previously unreported graft copolymer of xanthan gum (XOH) with acrylic acid was synthesized and the reaction conditions were optimized using a potassium monopersulfate (PMS)/Fe2+ redox pair. Grafting ratio, add on, and conversion increase with an increase in the ferrous ion concentration (2.0 × 10?3 to 5.0 × 10?3 mol dm?3) and PMS concentration (1.0 × 10?3 to 4.0 × 10?3 mol dm?3). It was observed that grafting takes place efficiently when the acrylic acid concentration and temperature were 5.0 × 10?2 mol dm?3 and 35°C, respectively. Samples of xanthan gum and xanthan gum–g–acrylic acid were subjected to thermogravimetric analysis with the objective of studying the effect of grafting of acrylic acid on the thermal stability of xanthan gum. The graft copolymer was found to be more thermally stable than xanthan gum. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 89: 1341–1346, 2003  相似文献   

5.
The optimum conditions for grafting N‐vinyl‐2‐pyrrolidone onto dextran initiated by a peroxydiphosphate/thiourea redox system were determined through the variation of the concentrations of N‐vinyl‐2‐pyrrolidone, hydrogen ion, potassium peroxydiphosphate, thiourea, and dextran along with the time and temperature. The grafting ratio increased as the concentration of N‐vinyl‐2‐pyrrolidone increased and reached the maximum value at 24 × 10?2 mol/dm3. Similarly, when the concentration of hydrogen ion increased, the grafting parameters increased from 3 × 10?3 to 5 × 10?3 mol/dm3 and attained the maximum value at 5 × 10?3 mol/dm3. The grafting ratio, add‐on, and efficiency increased continuously with the concentration of peroxydiphosphate increasing from 0.8 × 10?2 to 2.4 × 10?2 mol/dm3. When the concentration of thiourea increased from 0.4 × 10?2 to 2.0 × 10?2 mol/dm3, the grafting ratio attained the maximum value at 1.2 × 10?2 mol/dm3. The grafting parameters decreased continuously as the concentration of dextran increased from 0.6 to 1.4 g/dm3. An attempt was made to study some physicochemical properties in terms of metal‐ion sorption, swelling, and flocculation. Dextran‐gN‐vinyl‐2‐pyrrolidone was characterized with infrared spectroscopy and thermogravimetric analysis. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

6.
A graft copolymer based on a polysaccharide (sodium salt of carboxymethylcellulose) and a vinyl monomer (acrylamide) has been synthesized in a nitrogen atmosphere, and its reaction conditions have been optimized for a better yield with ferrous sulfate and potassium bromate as a redox initiator. The effects of ferrous ion, bromate ion, hydrogen ion, sodium carboxymethylcellulose, and acrylamide along with the reaction time and temperature have been studied through the determination of the grafting parameters: the grafting ratio, add‐on, conversion, efficiency, homopolymer, and rate of grafting. The maximum yield has been found to occur when the acrylamide concentration is 8.0 × 10?2 mol/dm3, whereas the maximum conversion occurs at a minimum concentration of acrylamide, that is, at 3.0 × 10?2 mol/dm3. The grafting parameters have been found to increase with an increasing concentration of the redox initiator (Fe2+, from 2.0 × 10?3 to 10.0 × 10?3 mol/dm3; BrO, from 2.2 × 10?3 to 4.0 × 10?3 mol/dm3). The maximum efficiency occurs with a reaction time of 210 min. The rate of grafting has been found to be maximum up to 60 min; after that, it decreases rapidly. In this article, it is shown that the hydrogen ion leads to a very clear decrease in the grafting parameters as its concentration increases from 2.1 × 10?3 to 11.3 × 10?3 mol/dm3. Grafted gum and ungrafted gum have been characterized with Fourier transform infrared spectroscopy and thermogravimetric analysis. A probable mechanism has been suggested for graft copolymerization. It has been observed that the graft copolymer is thermally more stable than the parent backbone. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

7.
Graft copolymerization of 4‐vinylpyridine (4‐VP) onto guar gum (GOH) using potassium monopersulfate (PMS)/thioacetamide (TAA) as a redox pair was studied in an aqueous medium under inert atmosphere. The concentration of potassium monopersulfate and thioacetamide should be 1.0 × 10?2 and 5.0 × 10?3 mol dm?3, respectively, for highest grafting ratio and efficiency. Efficient grafting was observed at 19.25 × 10?2 and 4.87 × 10?2 mol dm?3 concentration of 4‐vinylpyridine and sulfuric acid, respectively. The optimum temperature for grafting is 30°C. As the time period of reaction is increased, the grafting ratio increases, whereas efficiency decreases. The plausible mechanism of grafting has been suggested. A sample of guar gum and guar‐ g‐4‐vinylpyridine were subjected to thermogravimetric analysis with the objective of studying the effect of grafting 4‐vinylpyridine on the thermal stability of guar gum. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 84: 2380–2385, 2002  相似文献   

8.
The effect of reaction conditions on the grafting parameter during grafting of acrylamide onto guar gum has been studied using peroxydiphosphate–metabisulphite redox pair at 35 °C. Grafting ratio, efficiency and add‐on all increase as the concentrations of peroxydiphosphate and acrylamide increase up to 40.0 × 10−3 mol dm−3 and 40.0 × 10−2 mol dm−3, respectively. It has been observed that the optimum concentrations of metabisulphite and guar gum for obtaining high grafting ratio, efficiency, add‐on and conversion are 6.0 × 10−3mol dm−3 and 91.7 × 10−2 g dm−3, respectively. © 2000 Society of Chemical Industry  相似文献   

9.
The graft copolymer of xanthan gum with methacrylic acid was synthesized in inert atmosphere by using Fentos reagent as a redox initiator. The effect of reaction conditions on grafting parameters [G(%), E(%), C(%), A(%), H(%), and Rg] was investigated. Similar trend was observed on increasing the concentration of ferrous ion and hydrogen peroxide from 4.0 to 20.0 × 10?3 mol dm?3 and 2.5 to 10 × 10?3 mol dm?3 respectively, i.e., initially grafting parameters increased and after a certain range of concentration grafting parameters showed decreasing trend. Hydrogen ion shows influenced result i.e., small increment of concentration in hydrogen ion presents much increment in percent of grafting. It was observed that the [G(%), E(%), C(%), A(%), and Rg] increased upto 6.67 × 10?2 mol dm?3 concentration of methacylic acid after that it decreased. Maximum G(%) was obtained at minimum concentration of xanthan gum i.e., at 40 × 10?2 g dm?3. The optimum temperature and time duration of reaction for maximum percentage of grafting were found to be 45°C and 150 min respectively. Thermogravimetric analysis showed that the xanthan gum‐g‐methacrylic acid is thermally more stable than pure gum. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2007  相似文献   

10.
In the present article, the graft copolymerization of 4‐vinyl pyridine onto guar gum initiated by potassium peroxymonosulphate/ascorbic acid redox pair in an aqueous medium was studied gravimetrically under a nitrogen atmosphere. Grafting ratio, grafting efficiency, and add on increased on increasing the concentration of potassium peroxymonosulphate from 5.0 × 10?4 to 10 × 10?4 mol/L and ascorbic acid concentration from 0.4 × 10?3 to 2.0 × 10?3 mol/L. On increasing the hydrogen ion concentration from 2.5 × 10?3 to 10.0 × 10?3 mol/L, grafting ratio, efficiency, add on and conversion were increased. Maximum grafting was obtained when guar gum and monomer concentration were 1.0 g/L and 20.0 × 10?2 mol/L, respectively. An increase in temperature from 30 to 35°C increased the grafting ratio, but conversion and homopolymer decreased. The graft copolymers were characterized by IR spectroscopy and thermogravimetric analysis. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007  相似文献   

11.
The aim of this study was to examine the synthesis of a graft copolymer of chitosan and methacrylic acid (MAA) by free‐radical polymerization with a potassium peroxymonosulfate/cyclohexanone (CY) redox system in an inert atmosphere. The optimum reaction conditions affording maximum grafting ratio (%G), grafting efficiency (%E), add on (%A), and conversion (%C) were determined. The grafting parameters were found to increase with increasing concentration of MAA up to 24 × 10?2 mol/dm3, but thereafter, these parameters decreased. With increasing concentration of peroxymonosulfate from 0.6 × 10?2 to 1.2 × 10?2 mol/dm3, %G, %A, and %E increased continuously. All of these grafting parameters increased with increasing concentration of CY up to 1.2 × 10?2 mol/dm3, but beyond this concentration, the grafting parameters decreased. With various concentrations of chitosan from 0.6 to 1.4 g/dm3, the maximum %G, %A, and %E were obtained at 1.4 g/dm3. %G, %A, and %C decreased continuously with various concentrations of hydrogen ions from 2 × 10?3 to 6 × 10?3 mol/dm3. The grafting parameters increased with increasing temperature up to 35°C, but thereafter, these parameters decreased. With increasing time period of reaction from 60 to 180 min, %G, %A, and %E increased up to 120 min, but thereafter, these parameters decreased. The graft copolymer was characterized by Fourier transform infrared spectroscopy and thermogravimetric analysis. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

12.
The graft copolymerization reaction of acrylamide onto guar gum with a vanadium(V)/mandelic acid redox pair was carried out in an N2 atmosphere. The optimum concentrations of vanadium(V), mandelic acid, hydrogen ions, acrylamide, and guar gum for the maximum percentage of grafting were 6.0 × 10?3, 2.0 × 10?2, 55.0 × 10?2, and 20.0 × 10?2 mol/dm3 and 110.1 × 10?2 g/dm3, respectively. The optimum time and temperature of reaction were 90 min and 35°C, respectively, and during the study of [H+] variation, a prompt change in the value of the grafting parameters was observed. The maximum percentage of swelling of the graft copolymer was achieved at room temperature in 1 h. Studies of the flocculation, viscosity, and metal‐ion absorption capacity were also performed. The synthesized graft copolymer was characterized by Fourier transform infrared spectroscopy and thermogravimetric analyses, which showed that the grafted guar gum was thermally more stable than the ungrafted guar gum. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

13.
Unreported graft copolymer of 2‐acrylamido‐2‐methyl‐1‐propanesulphonic acid (AMPS) with sodium carboxymethylcellulose (Na‐CMC) was synthesized and reaction conditions were optimized using a bromate/thiourea redox pair under an inert atmosphere at 40°C. Grafting ratio, add on, and conversion increase as the concentration of thiourea and [H+] increases up to 3.6 × 10?3 and 0.6 × 10?2 mol dm?3, respectively, while on increasing the concentration of bromate ion and Na‐CMC, grafting ratio, add on, and conversion decrease. The samples of Na‐CMC and grafted Na‐CMC with AMPS were subjected to thermogravimetric analysis, with the objective of studying the effect of grafting of AMPS on the thermal stability of graft copolymer. The graft copolymer was found to be more thermally stable than pure Na‐CMC. Comparing the IR spectra of pure with grafted Na‐CMC confirm the evidence of grafting. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 100: 26–34, 2006  相似文献   

14.
The graft copolymerization of acrylic acid (AA) onto guar gum (GOH) was carried out by a peroxydiphosphate (PDP)–silver(I) system. Grafting ratio, efficiency, add‐on, and conversion increase upon increasing the concentration of PDP and acrylic acid, whereas they decrease upon increasing the concentration of guar gum. Upon increasing the concentration of silver and hydrogen ions up to 2.0 × 10−3 and 4.87 × 10−2 mol dm−3, respectively, the grafting ratio and efficiency increase but decrease upon further increasing the concentration. The increase in temperature from 30 to 45°C increases the grafting ratio but the conversion efficiency decreases. The optimum time period for graft copolymerization was found to be 2 h. The graft copolymers were characterized by infrared spectroscopy and thermogravimetric analysis. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 77: 39–44, 2000  相似文献   

15.
The effect of the reaction conditions on the grafting parameters during grafting of 2‐acrylamido‐2‐methyl‐1‐propanesulfonic acid onto sodium carboxymethylcellulose using H2O2/Fe+2 redox pair are studied at 30°C. The grafting ratio, add on, and conversion initially increase with the H2O2 concentration in the range of (10.0–15.0) × 10?2 mol dm?3. Thereafter, these parameters decrease with the H2O2 concentration. The grafting ratio, add on, and conversion increase when increasing the ferrous ion concentration from (0.5 to 4.0) × 10?2 mol dm?3 and decrease with a further increase in the concentration. It is observed that the grafting ratio and add on increase with the monomer concentration, whereas the conversion decrease. The hydrogen ions seem to be facilitating the grafting reaction up to a certain concentration and after this concentration seem to be retarding the process. The grafting ratio, add on, and conversion decrease with the sodium carboxymethylcellulose concentration. When increasing the time period from 60 to 90 min, the grafting parameters increase but decrease thereafter. Similarly, when increasing the temperature from 25 to 30°C, the grafting parameters increase and decrease thereafter. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 4819–4825, 2006  相似文献   

16.
Graft copolymerization of methyl methacrylate onto silk was investigated in aqueous solution using potassium peroxydiphosphate as initiator. The rate of grafting was determined by varying monomer, peroxydiphosphate ion, temperature, and solvent. The graft yield increased with increasing peroxydiphosphate ion upto 8 × 10?3 mol/1 and with further increase of peroxydiphosphate ion the graft yield decreased. The graft yield increased with increasing monomer concentration upto 9 wt.-% and with further increase of monomer the graft yield decreased. The rate of grafting increased with the increase of temperature. The effect of acid and water soluble solvents and salts on graft yield was investigated and a suitable rate expression was derived.  相似文献   

17.
The solution polymerization of acrylamide (AM) on cationic guar gum (CGG) under nitrogen atmosphere using ceric ammonium sulfate (CAS) as the initiator has been realized. The effects of monomer concentration and reaction temperature on grafting conversion, grafting ratio, and grafting efficiency (GE) have been studied. The optimal conditions such as 1.3 mol of AM monomer and 2.2 × 10?4 mol of CAS have been adopted to produce grafted copolymer (CGG1‐g‐PAM) of high GE of more than 95% at 10°C. The rates of polymerization (Rp) and rates of graft copolymerization (Rg) are enhanced with increase in temperature (<35°C).The Rp is enhanced from 0.43 × 10?4 mol L?1 s?1 for GG‐g‐PAM to 2.53 × 10?4 mol L?1 s?1 for CGG1‐g‐PAM (CGG1, degree of substitute (DS) = 0.007), and Rg from 0.42 × 10?4 to 2.00 × 10?4 mol L?1 s?1 at 10°C. The apparent activation energy is decreased from 32.27 kJ mol?1 for GG‐g‐PAM to 8.09 kJ mol?1 for CGG1‐g‐PAM, which indicates CGG has higher reactivity than unmodified GG ranging from 10 to 50°C. Increase of DS of CGG will lead to slow improvement of the polymerization rates and a hypothetical mechanism is put forward. The grafted copolymer has been characterized by infrared spectroscopy, thermal analysis, and scanning electron microscopy. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 104: 3715–3722, 2007  相似文献   

18.
The effect of reaction conditions on the grafting parameters during the grafting of acrylamide (ACM) onto guar gum (GOH) by using a Cu+2–mandelic acid (MA) redox couple was studied. On increasing the Cu+2 ion concentration (0.5 × 10−2 to 1.0 × 10−2 mol dm−3), an increase in total conversion of monomer, grafting ratio, efficiency, and add on was observed. Grafting ratios increased with an increase in concentration of mandelic acid and reaches its maximum value at 0.8 × 10−2 mol dm−3. It was observed that grafting onto guar gum takes place efficiently when monomer and hydrogen ion concentrations are 20.0 × 10−2 and 2.2 × 10−2 mol dm−3, respectively. Optimum temperature and time for obtaining a maximum grafting ratio and efficiency was found to be 35 ± 0.2°C and 2 h, respectively. The plausible mechanism of grafting was suggested. The graft copolymer was characterized by infrared spectroscopy and thermogravimetric analysis. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 71: 739–745, 1999  相似文献   

19.
Alginate‐g‐vinyl sulfonic acid graft copolymer was synthesized through the graft copolymerization of vinyl sulfonic acid (VSA) onto alginate with an efficient system, i.e., potassium peroxydiphosphate (PDP)/thiourea in an aqueous medium. The effects of the concentration of thiourea, PDP, hydrogen ion, alginate, and VSA along with the time and temperature on the graft copolymerization were studied by the determination of the grafting parameters (grafting ratio, add‐on, conversion, grafting efficiency, and homopolymer). The synthesized graft copolymer was characterized by FTIR analysis. Thermogravimetric analysis showed that the alginate‐g‐vinyl sulfonic acid is thermally more stable than alginate. Water swelling capacity, metal ion sorption, flocculation, and resistance to biodegradability studies of synthesized graft copolymer have been performed with respect to the parent polymer. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

20.
Graft copolymerization of methyl methacrylate onto wool was investigated in aqueous solution using potassium peroxydiphosphate as initiator. The rate of grafting was determined by varying monomer, peroxydiphosphate ion, temperature, solvent, and nature of wool. The graft yield increases with increase in monomer concentration. The graft yield increases significantly by increasing peroxydiphosphate ion up to 80 × 10?4mole/l.; with further increase of peroxydiphosphate ion the graft yield decreases. The rate of grafting increases with increase in temperature. The effect of acid-and water-soluble solvents on the rate of grafting was investigated and a suitable rate expression has been derived.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号