首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Polymer wrapped single‐walled carbon nanotubes (SWNTs) have been demonstrated to be a very efficient technique to obtain high purity semiconducting SWNT solutions. However, the extraction yield of this technique is low compared to other techniques. Poly‐alkyl‐thiophenes have been reported to show higher extraction yield compare to polyfluorene derivatives. Here, the affinity for semiconducting SWNTs of two polymers with a backbone containing didodecylthiophene units interspersed with N atoms is reported. It is demonstrated that one of the polymers, namely, poly(2,5‐dimethylidynenitrilo‐3,4‐didodecylthienylene) (PAMDD), has very high semiconducting SWNT extraction yield compared to the poly(3,4‐didodecylthienylene)azine (PAZDD). The dissimilar wrapping efficiency of these two polymers for semiconducting SWNTs is attributed to the interplay between the affinity for the nitrogen atoms of the highly polarizable walls of SWNTs and the mechanical flexibility of the polymer backbones. Photoluminescence (PL) measurements demonstrate the presence of metallic tubes and SWNT bundles in the sample selected with PAZDD and higher purity of SWNT‐PAMDD samples. The high purity of the semiconducting SWNTs selected by PAMDD is further demonstrated by the high performance of the solution‐processed field‐effect transistors (FETs) fabricated using a blade coating technique, which exhibit hole mobilities up to 33.3 cm2 V?1 s?1 with on/off ratios of 106.  相似文献   

2.
Sorting of semiconducting single‐walled carbon nanotubes (SWNTs) by conjugated polymers has attracted considerable attention recently because of its simplicity, high selectivity, and high yield. However, up to now, all the conjugated polymers used for SWNT sorting are electron‐donating (p‐type). Here, a high‐mobility electron‐accepting (n‐type) polymer poly([N,N′‐bis(2‐octyldodecyl)‐naphthalene‐1,4,5,8‐bis(dicarboximide)‐2,6‐diyl]‐alt‐5,5′‐(2,2′‐bithiophene)) (P(NDI2OD‐T2)) is utilized for the sorting of high‐purity semiconducting SWNTs, as characterized by Raman spectroscopy, dielectric force spectroscopy and transistor measurements. In addition, the SWNTs sorted by P(NDI2OD‐T2) have larger diameters than poly(3‐dodecylthiophene) (P3DDT)‐sorted SWNTs. Molecular dynamics simulations in explicit toluene demonstrate distinct linear or helical wrapping geometry between P(NDI2OD‐T2) and different types of SWNTs, likely as a result of the strong interactions between the large aromatic core of the P(NDI2OD‐T2) backbone and the hexagon path of SWNTs. By using high‐mobility n‐type P(NDI2OD‐T2) as the sorting polymer, ambipolar SWNT transistors with better electron transport than that attained by P3DDT‐sorted SWNTs are achieved. As a result, flexible negated AND and negated OR logic circuits from the same set of ambipolar transistors are fabricated, without the need for doping. The use of n‐type polymers for sorting semiconducting SWNTs and achieving ambipolar SWNT transistor characteristics greatly simplifies the fabrication of flexible complementary metal‐oxide‐semiconductor‐like SWNT logic circuits.  相似文献   

3.
Field‐effect transistors that employ an electrolyte in place of a gate dielectric layer can accumulate ultrahigh‐density carriers not only on a well‐defined channel (e.g., a two‐dimensional surface) but also on any irregularly shaped channel material. Here, on thin films of 95% pure metallic and semiconducting single‐walled carbon nanotubes (SWNTs), the Fermi level is continuously tuned over a very wide range, while their electronic transport and absorption spectra are simultaneously monitored. It is found that the conductivity of not only the semiconducting but also the metallic SWNT thin films steeply changes when the Fermi level reaches the edges of one‐dimensional subbands and that the conductivity is almost proportional to the number of subbands crossing the Fermi level, thereby exhibiting a one‐dimensional nature of transport even in a tangled network structure and at room temperature.  相似文献   

4.
Single‐walled carbon nanotube (SWNT) electrodes that are chemically and mechanically robust are fabricated using a simple drop cast method with thermal annealing and acid treatment. An electronic‐type selective decrease in sheet resistance of SWNT electrodes with HNO3 treatment is shown. Semiconducting SWNTs show a significantly higher affinity toward hole doping in comparison to metallic SWNTs; a ≈12‐fold and a ≈fivefold drop in sheet resistance, respectively. The results suggest the insignificance of the electronic type of the SWNTs for the film conductivity after hole doping. The SWNT films have been employed as transparent hole extracting electrodes in bulk heterojunction (BHJ) organic photovoltaics. Performances of the devices enlighten the fact that the electrode film morphology dominates over the electronic type of the doped SWNTs with similar sheet resistance and optical transmission. The power conversion efficiency (PCE) of 4.4% for the best performing device is the best carbon nanotube transparent electrode incorporated large area BHJ solar cell reported to date. This PCE is 90% in terms of PCEs achieved using indium tin oxide (ITO) based reference devices with identical film fabrication parameters indicating the potential of the SWNT electrodes as an ITO replacement toward realization of all carbon solar cells.  相似文献   

5.
Stem cells have shown great potential in regenerative medicine and attracted tremendous interests in recent years. Sensitive and reliable methods for stem cell labeling and in vivo tracking are thus urgently needed. Here, a novel approach to label human mesenchymal stem cells (hMSCs) with single‐walled carbon nanotubes (SWNTs) for in vivo tracking by triple‐modal imaging is presented. It is shown that polyethylene glycol (PEG) functionalized SWNTs conjugated with protamine (SWNT‐PEG‐PRO) exhibit extremely efficient cell entry into hMSCs, without affecting their proliferation and differentiation. The strong inherent resonance Raman scattering of SWNTs is used for in vitro and in vivo Raman imaging of SWNT‐PEG‐PRO‐labeled hMSCs, enabling ultrasensitive in vivo detection of as few as 500 stem cells administrated into mice. On the other hand, the metallic catalyst nanoparticles attached on nanotubes can be utilized as the T2‐contrast agent in magnetic resonance (MR) imaging of SWNT‐labeled hMSCs. Moreover, in vivo photoacoustic imaging of hMSCs in mice is also demonstrated. The work reveals that SWNTs with appropriate surface functionalization have the potential to serve as multifunctional nanoprobes for stem cell labeling and multi‐modal in vivo tracking.  相似文献   

6.
Polymers which enrich semiconducting single‐walled carbon nanotubes (SWNTs) and are also removable after enrichment are highly desirable for achieving high‐performance field‐effect transistors (FETs). We have designed and synthesized a new class of alternating copolymers containing main‐chain fluorene and hydrofluoric acid (HF) degradable disilane for sorting and preferentially suspending semiconducting nanotube species. The results of optical absorbance, photoluminescence emission, and resonant Raman scattering show that poly[(9,9‐dioctylfluorenyl‐2,7‐diyl)‐alt‐co‐1,1,2,2‐tetramethyl‐disilane] preferentially suspends semiconducting nanotubes with larger chiral angle (25°–28°) and larger diameter (1.03 nm–1.17 nm) (specifically (8,7), (9,7) and (9,8) species) present in HiPCO nanotube samples. Computer simulation shows that P1 preferentially interacts with (8,7) (semiconducting) over (7,7) (metallic) species, confirming that P1 selects larger diameter, larger chiral angle semiconducting tubes. P1 wrapped on the surface of SWNTs is easily washed off through degradation of the disilane bond of the alternating polymer main chain in HF, yielding “clean” purified SWNTs. We have applied the semiconducting species enriched SWNTs to prepare solution‐processed FET devices with random nanotube network active channels. The devices exhibit stable p‐type semiconductor behavior in air with very promising characteristics. The on/off current ratio reaches up to 15 000, with on‐current level of around 10 μA and estimated hole mobility of 5.2 cm2 V?1 s?1.  相似文献   

7.
Functional and easy‐to‐integrate nanodevices operating in the telecom wavelength ranges are highly desirable. Indeed, the pursuit for faster, cheaper, and smaller transceivers for datacom applications is fueling the interest in alternative materials to develop the next generation of photonic devices. In this context, single wall carbon nanotubes (SWNTs) have demonstrated outstanding electrical and optical properties that make them an ideal material for the realization of ultracompact optoelectronic devices. Still, the mixture in chirality of as‐synthesized SWNTs and the necessity of precise positioning of SWNT‐based devices hinder the development of practical devices. Here, the realization of operational devices obtained using liquid solution‐based techniques is reported, which allow high‐purity sorting and localized deposition of aligned semiconducting SWNTs (s‐SWNTs). More specifically, devices are demonstrated by combining a polymer assisted extraction method, which enables a very effective selection of s‐SWNTs with a diameter of about 1–1.2 nm, with dielectrophoresis, which localizes the deposition onto silicon wafers in aligned arrays in‐between prepatterned electrodes. Thus, long semiconducting nanotubes directly contact the electrodes and, when asymmetric contacts (i.e., source and drain made of different metals) are used, each device can operate both as photoemitter and as photodetector in the telecom band around 1.55 µm in air at room temperature.  相似文献   

8.
Dichlorocarbene is added to the sidewalls of single‐walled carbon nanotubes (SWNTs) with diameters ranging from 1.2 to 2.2 nm. Small diameter SWNTs are found to react much more easily than large diameter SWNTs. Upon functionalization, the conductance could be largely preserved for almost all SWNTs, while an effective bandgap increase for functionalized metallic SWNTs (m‐SWNTs) and a bandgap reduction for functionalized semiconducting SWNTs (s‐SWNTs) are generally observed. The results suggest that [2 + 1] cycloaddition is an excellent choice of processing, resulting in SWNTs over a large diameter range with electronic properties that are almost unaffected. Furthermore, possible separation of SWNTs according to their diameters could be achieved due to the apparent diameter‐dependent reactivity.  相似文献   

9.
Poly(m‐aminobenzene sulfonic acid) (PABS), was covalently bonded to single‐walled carbon nanotubes (SWNTs) to form a water‐soluble nanotube–polymer compound (SWNT–PABS). The conductivity of the SWNT–PABS graft copolymer was about 5.6 × 10–3 S cm–1, which is much higher than that of neat PABS (5.4 × 10–7 S cm–1). The mid‐IR spectrum confirmed the formation of an amide bond between the SWNTs and PABS. The 1H NMR spectrum of SWNT–PABS showed the absence of free PABS, while the UV/VIS/NIR spectrum of SWNT–PABS showed the presence of the interband transitions of the semiconducting SWNTs and an absorption at 17 750 cm–1 due to the PABS addend.  相似文献   

10.
The fluorescent imidazolium salt (1,3‐bis(9‐anthracenylmethyl)imidazolium chloride, [bamim]Cl) has been grafted onto the surfaces of single‐walled carbon nanotubes (SWNTs) using an ion exchange strategy based on metathesis of the K+ ion in CO2K derivatized SWNTs with [bamim]+. The resulting SWNT‐[bamim] complex has been characterized with high‐resolution transmission electron microscopy (HR‐TEM), X‐ray photoelectron spectroscopy (XPS), elemental mapping, and elemental linear profiles analysis. A blue light emission can be observed at 392, 414 and 438 nm for SWNT‐[bamim] upon being excited at 254 nm. The quantum yield (QY) of the SWNT‐[bamim] complex (0.40) is much higher than that of SWNT/[bamim]Cl (0.02), used as a control, and prepared using a ππ stacking method, indicating that ion exchange is a far more effective strategy for retaining a high QY. Additionally, UV‐Vis‐NIR and Raman spectroscopy show that the SWNT‐[bamim] complex can maintain the one‐dimensional electronic states of SWNTs. Other imidazolium salts have also been successfully grafted onto SWNTs via the same strategy, indicating that the ion exchange process can serve as a universal strategy for the functionalization of SWNTs.  相似文献   

11.
Ultrathin composite films consisting of mixtures of metallic (m‐) and semiconducting (s‐) single‐walled carbon nanotubes (SWNTs) with a conjugated block copolymer are developed from a solution‐based process. The electronic properties of the films are precisely controlled from metallic to semiconducting to insulating. The tunability of the electronic composite sheets is mainly attributed to (1) the efficient dispersion of SWNTs with a conjugated block copolymer in solution, (2) the control of the number of nanotubes by centrifugation, and (3) the individually networked deposition of SWNTs embedded in the conjugated block copolymer on the target substrate by spin‐coating. A highly reliable field‐effect transistor with a networked composite film is realized with a specific range of tube density and a high on/off current ratio of approximately 106 which resulted from the Schottky barriers evolved between the individual m‐ and s‐SWNTs in the network. There is also great freedom when choosing both the gate dielectrics and source‐drain electrodes for transistors containing the composite films. Furthermore, the fabricated electronic composites are highly transparent, flexible, and chemically robust and thus, they can be conveniently micropatterned by photolithography, as well as by unconventional transfer printing techniques.  相似文献   

12.
A new dispersant for stabilization of single wall carbon nanotubes (SWNTs) in water that simultaneously utilizes three different dispersion or stabilization mechanisms: surfactant adsorption, polymeric wrapping, and Coulomb repulsive interaction, has been demonstrated. The new dispersant, a charged rod‐like nanoparticle (cROD), is a cylindrical micelle wrapped by negatively charged polymers which is fabricated by the aqueous free radical polymerization of a polymerizable cationic surfactant, cetyltrimethylammonium 4‐vinylbenzoate (CTVB), in the presence of sodium 4‐styrenesulfonate (NaSS). The surface charge density of the cRODs is controlled by varying the concentration of NaSS. Dispersions of SWNTs are obtained by sonicating a mixture of SWNTs and cROD in water, followed by ultra‐centrifugation and decanting. While the cRODs with neutral or low surface change densities (0 and 5 mol % NaSS) result in very low dispersion power and poor stability, the cRODs with high surface charge densities (15, 25, and 40 mol % NaSS) produce excellent dispersions with SWNT concentration as high as 437 mg L?1 and long term stability. The sharp van Hove transition peaks of the cROD assisted SWNT dispersions indicate the presence of individually isolated SWNTs. Atomic force microscopy and small angle neutron scattering analysis show that the dominant encapsulation structure of the cROD assisted SWNTs is surfactant assisted polymeric wrapping. SWNTs dispersed by the cRODs can be fully dried and easily re‐dispersed in water, providing enhanced processibility of SWNTs.  相似文献   

13.
The development of solar energy conversion materials is critical to the growth of a sustainable energy infrastructure in the coming years. A novel hybrid material based on single‐walled carbon nanotubes (SWNTs) and form‐stable polymer phase change materials (PCMs) is reported. The obtained materials have UV‐vis sunlight harvesting, light‐thermal conversion, thermal energy storage, and form‐stable effects. Judicious application of this efficient photothermal conversion to SWNTs has opened up a rich field of energy materials based on novel SWNT/PCM composits with enhanced performance in energy conversion and storage.  相似文献   

14.
We report a new approach of reactive spinning to fabricate thermosetting cyanate ester micro‐scale diameter fibers with aligned single walled carbon nanotubes (SWNTs). The composite fibers were produced by first dispersing the SWNTs (1 wt %) in cyanate ester (CE) via solvent blending, followed by pre‐polymerization, spinning and then multiple‐stage curing. The pre‐polymerization, spinning and post‐spinning cure temperatures were carefully controlled to achieve good spun crosslinked fibers. Both pristine and amino‐functionalized SWNTs were used for the reinforced fiber spinning. Amino‐functionalized SWNTs (f‐SWNTs) were prepared by reacting acid‐treated SWNTs with toluene 2,4‐diisocyanate and then ethylenediamine (EDA). FTIR, optical microscopy and scanning electron microscopy (SEM) showed that the amino‐functionalized SWNTs were covalently and uniformly dispersed into the cyanate ester matrix and aligned along the fiber axis. The alignment was further confirmed using polarized Raman spectroscopy. The composite fibers with aligned amino‐functionalized SWNTs possess improved tensile properties with respect to neat CE fibers, showing 85, 140, and 420% increase in tensile strength, elongation and stress‐strain curve area (i.e., toughness), respectively. NH2‐functionalization of SWNTs improves their dispersibility, alignment and interfacial strength and hence tensile properties of composite spun fibers. Fiber spinning to align SWNTs using thermosetting resin is novel. Others have reported fiber spinning to align SWNTs in thermoplastics. However, thermosetting CE resins offer the advantages of low and controllable viscosity during spinning and reactivity with amino functional groups to enable f‐SWNT/CE covalent bonding.  相似文献   

15.
The catalytic growth by chemical vapor deposition is a well-established route to single-wall carbon nanotubes (SWNTs). In this process, the choice and preparation of the metal catalyst determines the nanotube growth. The system Fe/Mo is known to yield a large percentage of SWNTs. In order to make use of SWNTs in electronic or electromechanical devices, the patterned growth relies on lithography techniques like photolithography or electron beam lithography. Many standard lithographic processes, i.e. the combination of photoresist and lift-off procedure, are not compatible with Fe/Mo catalyst solutions, resulting in low SWNT yield. We present a systematic study of the influence of the catalyst solvent on the patterned SWNT growth. Most remarkably, the use of water as a solvent is the basis for integrating SWNT with the established processing techniques due to its compatibility with any lithographic process and the simultaneous high SWNT yield.  相似文献   

16.
Films made of 2D networks of single‐walled carbon nanotubes (SWNTs) are one of the most promising active‐channel materials for field‐effect transistors (FETs) and have a variety of flexible electronic applications, ranging from biological and chemical sensors to high‐speed switching devices. Challenges, however, still remain due to the current hysteresis of SWNT‐containing FETs, which has hindered further development. A new and robust method to control the current hysteresis of a SWNT‐network FET is presented, which involves the non‐volatile polarization of a ferroelectric poly(vinylidene fluoride‐trifluoroethylene) (P(VDF‐TrFE)) gate insulator. A top‐gate FET with a solution‐processed SWNT‐network exhibits significant suppression of the hysteresis when the gate‐voltage sweep is greater than the coercive field of the ferroelectric polymer layer (≈50 MV m?1). These near‐hysteresis‐free characteristics are believed to be due to the characteristic hysteresis of the P(VDF‐TrFE), resulting from its non‐volatile polarization, which makes effective compensation for the current hysteresis of the SWNT‐network FETs. The onset voltage for hysteresis‐minimized operation is able to be tuned simply by controlling the thickness of the ferroelectric film, which opens the possibility of operating hysteresis‐free devices with gate voltages down to a few volts.  相似文献   

17.
Poly(3‐hexylthiophene) (P3HT) hybrids with single‐walled carbon nanotubes (SWNTs) were prepared using a series of SWNTs with various defect contents on their surfaces. The hybrids were synthesized by exploiting the ππ interaction between P3HT and the SWNTs, resulting in efficient dispersion of the carbon nanotubes in the P3HT solution. UV‐visible and photoluminescence (PL) spectra showed that the carbon nanotubes quench the PL of P3HT in the hybrids, indicating that electron transfer occurs from photo‐excited P3HT to the SWNTs. This electron transfer from P3HT to carbon nanotubes was disrupted by the presence of defects on the SWNT surfaces. However, the PL lifetime of P3HT in the hybrids was found to be the same as that of pure P3HT in solution, indicating the formation of a ground‐state non‐fluorescent complex of P3HT/SWNTs.  相似文献   

18.
The integration of redox proteins with nanomaterials has attracted much interest in the past years, and metallic single‐walled carbon nanotubes (SWNTs) have been introduced as efficient electrical wires to connect biomolecules to metal electrodes in advanced nano‐biodevices. Besides preserving biofunctionality, the protein–nanotube connection should ensure appropriate molecular orientation, flexibility, and efficient, reproducible electrical conduction. In this respect, yeast cytochrome c redox proteins are connected to gold electrodes through lying‐down functionalized metallic SWNTs. Immobilization of cytochromes to nanotubes is obtained via covalent bonding between the exposed protein thiols and maleimide‐terminated functional chains attached to the carbon nanotubes. A single‐molecule study performed by combining scanning probe nanoscopies ascertains that the protein topological properties are preserved upon binding and provides unprecedented current images of single proteins bound to carbon nanotubes that allow a detailed IV characterization. Collectively, the results point out that the use as linkers of suitably functionalized metallic SWNTs results in an electrical communication between redox proteins and gold electrodes more efficient and reproducible than for proteins directly connected with metal surfaces.  相似文献   

19.
Single‐walled carbon nanotubes (SWNTs) are functionalized through both covalent and noncovalent bonding approaches to enhance dispersion and interfacial bonding. The coefficient of thermal expansion (CTE) of the functionalized‐SWNT‐reinforced epoxy composites are measured with a thermal mechanical analyzer (TMA). Experimental results indicate that changes of the glass‐transition temperature (Tg) in functionalized SWNT–polymer composites are dependent upon the functionalization methods. The CTE below the glass‐transition temperature of nanocomposites with a 1 wt % loading of nanotubes is substantially diminished compared to a neat polymer. A reduction in the CTE of up to 52 % is observed for nanocomposites using functionalized nanotubes. However, the CTE above the Tg significantly increases because of the contribution from phonon mode and Brownian motions of a large number of SWNTs in resin‐crosslinked networks, but the increments are compromised by possible interfacial confinement. A tunable CTE induced through nanotube functionalization has application potentials for high‐performance composites, intelligent materials, and circuit protections.  相似文献   

20.
A method of patterning large arrays of organic single crystals is reported. Using single‐walled carbon nanotube (SWNT) bundles as patterned templates, several organic semiconductor materials were successfully patterned, including p‐type pentacene, tetracene, sexiphenylene, and sexithiophene, as well as n‐type tetracyanoquinodimethane (TCNQ). This study suggests that the selective growth of crystals onto patterned carbon nanotubes is most likely due to the coarse topography of the SWNT bundles. Moreover, we observed that the crystals nucleated from SWNT bundles and grew onto SWNT bundles in a conformal fashion. The dependence of the number of crystals on the quantity of SWNT bundles is also discussed. The crystal growth can be directly applied onto transistor source‐drain electrodes and arrays of organic single‐crystal field effect transistors are demonstrated. The results demonstrate the potential of utilizing carbon nanotubes as nucleation templates for patterning a broad range of organic materials for applications in optoelectronics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号