首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A new class of optically active poly(amide‐imide‐urethane) was synthesized via two‐step reactions. In the first step, 4,4′‐methylene‐bis(4‐phenylisocyanate) (MDI) reacts with several poly(ethylene glycols) (PEGs) such as PEG‐400, PEG‐600, PEG‐2000, PEG‐4000, and PEG‐6000 to produce the soft segment parts. On the other hand, 4,4′‐(hexafluoroisopropylidene)‐N,N′‐bis(phthaloyl‐L ‐leucine‐p‐amidobenzoic acid) (2) was prepared from the reaction of 4,4′‐(hexafluoroisopropylidene)‐N,N′‐bis(phthaloyl‐L ‐leucine) diacid chloride with p‐aminobenzoic acid to produce hard segment part. The chain extension of the above soft segment with the amide‐imide 2 is the second step to give a homologue series of poly(amide‐imide‐urethanes). The resulting polymers with moderate inherent viscosity of 0.29–1.38 dL/g are optically active and thermally stable. All of the above polymers were fully characterized by IR spectroscopy, elemental analyses, and specific rotation. Some structural characterization and physical properties of this new optically active poly(amide‐imide‐urethanes) are reported. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 91: 2288–2294, 2004  相似文献   

2.
A series of molecular‐weight‐controlled imide resins end‐capped with phenylethynyl groups were prepared through the polycondensation of a mixture of 1,4‐bis(4‐amino‐2‐trifluoromethylphenoxy)benzene and 1,3‐bis(4‐aminophenoxy)benzene with 4,4′‐oxydiphthalic anhydride in the presence of 4‐phenylethynylphthalic anhydride as an end‐capping agent. The effects of the resin chemical structures and molecular weights on their melt processability and thermal properties were systematically investigated. The experimental results demonstrated that the molecular‐weight‐controlled imide resins exhibited not only meltability and melt stability but also low melt viscosity and high fluidability at temperatures lower than 280°C. The molecular‐weight‐controlled imide resins could be thermally cured at 371°C to yield thermoset polyimides by polymer chain extension and crosslinking. The neat thermoset polyimides showed excellent thermal stability, with an initial thermal decomposition temperature of more than 500°C and high glass‐transition temperatures greater than 290°C, and good mechanical properties, with flexural strengths in the range of 140.1–163.6 MPa, flexural moduli of 3.0–3.6 GPa, tensile strengths of 60.7–93.8 MPa, and elongations at break as high as 14.7%. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2008  相似文献   

3.
Three novel polyimides (PIs) having pendent 4‐(quinolin‐8‐yloxy) aniline group were prepared by polycondensation of a new diamine with commercially available tetracarboxylic dianhydrides, such as pyromellitic dianhydride, 3,3′,4,4′‐benzophenone tetracarboxylic dianhydride, and bicyclo[2.2.2]‐oct‐7‐ene‐2,3,5,6‐tetracarboxylic dianhydride. These PIs were characterized by FTIR, 1H NMR, and elemental analysis; they had high yields with inherent viscosities in the range of 0.4–0.5 dl g−1, and exhibited excellent solubility in many organic solvents such as N,N‐dimethyl acetamide, N,N′‐dimethyl formamide, N‐methyl pyrrolidone (NMP), dimethyl sulfoxide, and pyridine. These PIs exhibited glass transition temperatures (Tg) between 250 and 325° C. Their initial decomposition temperatures (Ti) ranged between 270 and 450°C, and 10% weight loss temperature (T10) up to 500°C with 68% char yield at 600°C under nitrogen atmosphere. Transparent and hard polymer films were obtained via casting from their NMP solutions. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

4.
A series of poly(ether imide)s (PEIs) with light colors and good mechanical properties were synthesized from 2,5‐bis(3,4‐dicarboxyphenoxy)biphenyl dianhydride and various aromatic ether–diamines via a conventional two‐step polymerization technique that included ring‐opening polyaddition at room temperature to poly(amic acid)s (PAAs) followed by thermal imidization. The precursor PAAs had inherent viscosities ranging from 0.71 to 1.19 dL/g and were solution‐cast and thermally cyclodehydrated to flexible and tough PEI films. All of the PEI films were essentially colorless, with ultraviolet–visible absorption cutoff wavelengths between 377 and 385 nm and yellowness index values ranging from 10.5 to 19.9. These PEIs showed high thermal stabilities with glass‐transition temperatures of 206–262°C and decomposition temperatures (at 10% weight loss) higher than 478°C. They also showed low dielectric constants of 3.39–3.72 (at 1 MHz) and low water absorptions below 0.85 wt %. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

5.
A novel aromatic diamine monomer, 4‐(3,5‐dimethoxyphenyl)‐2,6‐bis(4‐aminophenyl)pyridine (DPAP) was successfully synthesized by 4′‐nitroacetophenone and 3,5‐dimethoxybenzaldehyde as raw material. The structure of DPAP was confirmed by Fourier transform infrared, nuclear magnetic resonance, and mass analysis. A series of polyimides (PIs) were obtained by polycondensation with various dianhydrides via the conventional two‐step method. These PIs showed good solubility in organic solvents. They also presented high thermal stability, the glass transition temperatures (Tg) of polymers were in the range of 325–388 °C, and the temperature at 10% weight loss was in the range of 531–572 °C. Furthermore, these polymers also exhibited outstanding hydrophobicity with the contact angles in the range of 89.1°–93.5°. Moreover, the results of wide‐angle X‐ray diffraction (WAXD) confirmed these polymers showed amorphous structure. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 45827.  相似文献   

6.
The objective of this research was the preparation of polyimides from 1,2‐bis(p‐dimethylaminophenylimino)alkane homologues and various dianhydrides in N‐methylpyrrolidone by one‐stage polycondensation. The monomers were prepared via condensation of p‐dimethylaminobenzaldehyde and the corresponding diamines, 1,4‐diaminobutane, 1,3‐diaminopropane and 1,2‐diaminoethane. The influence of the incorporation of this moiety into the polymer backbone on the properties of the polyimides has been evaluated. The thermogram of the polyimides indicated that PI‐10 to PI‐32 had Tg values ranging from 181 to 290 °C. The inherent viscosities of the polymers ranged from 0.99 to 2.05 dl g?1, and the highest solubility was obtained without significant loss of the thermal properties. Copyright © 2004 Society of Chemical Industry  相似文献   

7.
A novel, asymmetric diamine, 3‐(4‐aminophenylthio)‐N‐aminophthalimide, was prepared from 3‐chloro‐N‐aminophthalimide and 4‐aminobenzenethiol. The structure of the diamine was determined via IR and 1H‐NMR spectroscopy and elemental analysis. A series of polyimides were synthesized from 3‐(4‐aminophenylthio)‐N‐aminophthalimide and aromatic dianhydrides by a conventional two‐step method in N,N‐dimethylacetamide and by a one‐step method in phenols. These polyimides showed good solubility in 1‐methyl‐2‐pyrrolidinone, m‐cresol, and p‐chlorophenol, except polyimide from pyromellitic dianhydride, which was only soluble in p‐chlorophenol. The 5% weight loss temperatures of these polyimides ranged from 460 to 498°C in air. Dynamic mechanical thermal analysis indicated that the glass‐transition temperatures of the polyimides were in the range 278–395°C. The tensile strengths at break, moduli, and elongations of these polyimides were 146–178 MPa, 1.95–2.58 GPa, and 9.1–13.3%, respectively. Compared with corresponding polyimides from 4,4′‐diamiodiphenyl ether, these polymers showed enhanced solubility and higher glass‐transition temperatures. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

8.
Two diisocyanate monomers containing methylene groups and built‐in imide structure have been prepared from the parent diacids via the Curtius–Weinstock rearrangement. Polyimides have been synthesized by solution polymerization of these isocyanates with pyromellitic dianhydride (PMDA), 3,3′,4,4′‐benzophenonetetracarboxylic dianhydride (BTDA), and hexafluoroisopropylidene‐2,2‐bis(phthalic‐anhydride) (6FDA). All monomers and polymers were characterized by conventional methods, and the physical properties of the polymers, including solution viscosity, solubility, thermal stability and thermal behaviour, were studied. © 2000 Society of Chemical Industry  相似文献   

9.
A novel aromatic diamine, 1,1‐bis(4‐amino‐3,5‐dimethylphenyl)‐1‐(3,4,5‐trifluorophenyl)‐2,2,2‐trifluoroethane, containing a pendant polyfluorinated phenyl group, a trifluoromethyl group, and methyl groups ortho‐substituted to the amino groups in the structure was synthesized and characterized. The diamine was polymerized with several aromatic dianhydrides, including 3,3′,4,4′‐biphenyltetracarboxylic dianhydride, 3,3′,4,4′‐benzophenonetetracarboxylic dianhydride, 4,4′‐oxydiphthalic anhydride, and 4,4′‐hexafluoroisopropylidene diphthalic anhydride, via a high‐temperature one‐step procedure to afford four polyimides (PIs) with inherent viscosities of 0.47–0.70 dL/g. The PIs exhibited excellent solubilities in a variety of organic solvents. They were soluble not only in polar aprotic solvents but in many common solvents, such as cyclopentanone, tetrahydrofuran, and even toluene at room temperature. The tough and flexible PI films cast from the PI solutions exhibited good thermal stabilities and acceptable tensile properties. The glass‐transition temperatures were in the range 312–365°C, and the 5% weight loss temperatures were all higher than 480°C in nitrogen. The films had tensile strengths in the range 76–99 MPa, tensile moduli of 2.2–2.8 GPa, and elongations at break of 5–8%. In addition, the PI films exhibited excellent transparency in the visible light region with cutoff wavelength as low as 302 nm and transmittance higher than 88% at the wavelength of 450 nm. The PI films showed low dielectric constants ranging from 2.50–2.68 and low moisture absorptions of less than 0.56%. The good combined properties of the PIs mainly resulted from the synergic effects of the different substituents. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

10.
In this article, 2,2′‐bis[4‐(4‐maleimidephen‐oxy)phenyl)]propane (BMPP) resin and N,N‐4,4′‐bismaleimidodiphenylmethyene (BDM) resin blends were modified by diallyl bisphenol A (DABPA). The effects of the mole concentration of BMPP on mechanical properties, fracture toughness, and heat resistance of the modified resins were investigated. Scanning electron microscopy was used to study the microstructure of the fractured modified resins. The introduction of BMPP resin improves the fracture toughness and impact strength of the cured resins, whose thermal stabilities are hardly affected. Dynamic mechanical analysis shows that the modified resins can maintain good mechanical properties at 270.0°C, and their glass transition temperatures (Tg) are above 280.0°C. When the mole ratio of BDM : BMPP is 2 : 1(Code 3), the cured resin performs excellent thermal stability and mechanical property. Its Tg is 298°C, and the Charpy impact strength is 20.46 KJ/m2. The plane strain critical stress intensity factor (KIC) is 1.21 MPa·m0.5 and the plane strain critical strain energy release rate (GIC) is 295.64 J/m2. Compared with that of BDM/DABPA system, the KIC and GIC values of Code 3 are improved by 34.07% and 68.10%, respectively, which show that the modified resin presented good fracture toughness. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40395.  相似文献   

11.
3,3′,4,4′‐Diphenylsulfonetetracarboxylic dianhydride ( 1 ) was reacted with L‐leucine ( 2 ) in acetic acid and the resulting imide‐acid ( 3 ) was obtained in high yield. The diacid chloride ( 4 ) was prepared from diacid derivative ( 3 ) by reaction with thionyl chloride. The polycondensation reaction of diacid chloride ( 4 ) with several aromatic diamines such as 4,4′‐sulfonyldianiline ( 5a ), 4,4′‐diaminodiphenyl methane ( 5b ), 4,4′‐diaminodiphenylether ( 5c ), p‐phenylenediamine ( 5d ), m‐phenylenediamine ( 5e ), 2,4‐diaminotoluene ( 5f ), and 1,5‐diaminonaphthalene ( 5g ) was developed by using a domestic microwave oven in the presence of a small amount of a polar organic medium such as o‐cresol. The polymerization reactions were also performed under two conventional methods: low temperature solution polycondensation in the presence of trimethylsilyl chloride, and a short period reflux conditions. A series of optically active poly(amide‐imide)s with inherent viscosity of 0.25–0.42 dL/g were obtained with high yield. All of the above polymers were fully characterized by IR, elemental analyses, and specific rotation techniques. Some structural characterizations and physical properties of these optically active poly (amide‐imide) s are reported. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 91: 2992–3000, 2004  相似文献   

12.
A series of thermal insulation, acoustic absorption isocyanate‐based lightweight polyimide (PI) foams with 4,4′‐diaminodiphenyl ether (ODA) units were prepared from polyaryl polymethylene isocyanate (PAPI) and the esterification solution derived from pyromellitic dianhydride (PMDA) and ODA. The structures and properties of the PI foams prepared with different molar ratio of ODA/PMDA were investigated in detail. The results show that the ODA units have great influence on the foam properties. With the increase of the ODA units, the density decreases firstly and then increases. When the molar ratio of ODA/PMDA is 3/10, the foam reaches the minimum density (13.7 kg/m3). Moreover, with increasing the ODA units, the acoustic absorption properties increase firstly and then decrease owing to the variation of the average cell diameter of the PI foams. All PI foams show excellent thermal stability, and the 5% and 10% weight loss temperature are in the range of 250–270 °C and 295–310 °C, respectively. In addition, the PI foams present low thermal conductivity and thermal diffusivity. Furthermore, the mechanical property was also evaluated and the compressive strength of the PI foams is in the range of 33.0–45.7 kPa. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46029.  相似文献   

13.
Low‐molecular‐weight HOOC‐terminated poly(butylene adipate) prepolymer (PrePBA) and poly(butylene succinate) prepolymer (PrePBS) were synthesized through melt‐condensation polymerization from adipic acid or succinic acid with butanediol. The catalyzed chain extension of these prepolymers was carried out at 180–220°C with 2,2′‐(1,4‐phenylene)‐bis(2‐oxazoline) as a chain extender and p‐toluenesulfonic acid (p‐TSA) as a catalyst. Higher molecular weight polyesters were obtained from the catalyzed chain extension than from the noncatalyzed one. However, an improperly high amount of p‐TSA and a high temperature caused branching or a crosslinking reaction. Under optimal conditions, chain‐extended poly(butylene adipate) (PBA) with a number‐average molecular weight up to 29,600 and poly(butylene succinate) (PBS) with an intrinsic viscosity of 0.82 dL/g were synthesized. The chain‐extended polyesters were characterized by IR spectroscopy, 1H‐NMR spectroscopy, differential scanning calorimetry (DSC), thermogravimetric analysis, wide‐angle X‐ray scattering, and tensile testing. DSC, wide‐angle X‐ray scattering, and thermogravimetric analysis characterization showed that the chain‐extended PBA and PBS had lower melting temperatures and crystallinities and slower crystallization rates and were less thermally stable than PrePBA and PrePBS. This deterioration of their properties was not harmful enough to impair their thermal processing properties and should not prevent them from being used as biodegradable thermoplastics. The tensile strength of the chain‐extended PBS was about 31.05 MPa. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

14.
A new kind of aromatic unsymmetrical diamine monomer containing thiazole ring, 2‐amino‐5‐(4‐aminophenyl)‐thiazole (AAPT), was synthesized. A series of novel polyimides were prepared by polycondensation of AAPT with various aromatic dianhydrides by one‐step polyimidation process. The synthesized polyimides had inherent viscosity values of 0.36–0.69 dL/g and were easily dissolved in highly dipolar solvents. Meanwhile, strong and flexible polyimide films were obtained, which have good thermal and thermo‐oxidative stability with the glass transition temperatures (Tg) of 276.7–346.1°C, the temperature at 5% weight loss of 451–492°C in nitrogen and 422–440°C in air, as well as have outstanding mechanical properties with the tensile strengths of 94–122 MPa, elongations at breakage of 5–18%. These films also had dielectric constants of 3.12–3.38 at 10 MHz. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

15.
The microwave assisted polycondensation of two polyimides were studied using pyromellitic dianhydride (PMDA), and 4,4′‐(hexafluoroisopropyliden)diphthalic anhydride (6FDA) as dianhydride monomers and 2,4,6‐trimethyl‐m‐phenylenediamine (TrmPD), as diamine monomer, under microwave irradiation in DMF and DMSO solvents. The structure and performance of polymers were characterized by Fourier Transform Infrared Spectroscopy (FTIR), viscosity, density, and Thermogravimetric Analysis (TGA). The results show that the polyimides can be obtained in a short reaction time with high intrinsic viscosity and high yield. The effect of the presence of a bridging group, ? C(CF3)2? , in the monomer structure is apparent in the permeability parameters of the macromolecules as polymer (6FDA‐TrmPD) always presents better results than polymer (PMDA‐TrmPD). Properties as density and Tg increases with the time exposition to the microwave irradiation. Polyimides obtained present good thermal properties because they began to lose weight in a range of 8–16% at high temperature as 450°C. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

16.
A polyfluorinated aromatic diamine, 3,3′, 5,5′‐tetrafluoro‐4,4′‐diaminodiphenylmethane (TFDAM), was synthesized and characterized. A series of polyimides, PI‐1–PI‐4, were prepared by reacting the diamine with four aromatic dianhydrides via a one‐step high‐temperature polycondensation procedure. The obtained polyimide resin had moderate inherent viscosity (0.56–0.68 dL/g) and excellent solubility in common organic solvents. The polyimide films exhibited good thermal stability, with an initial thermal decomposition temperature of 555°C–621°C, a 10% weight loss temperature of 560°C–636°C, and a glass‐transition temperature of 280°C–326°C. Flexible and tough polyimide films showed good tensile properties, with tensile strength of 121–138 MPa, elongation at break of 9%–12%, and tensile modulus of 2.2–2.9 GPa. The polyimide films were good dielectric materials, and surface and volume resistance were on the order of a magnitude of 1014 and 1015 Ω cm, respectively. The dielectric constant of the films was below 3.0 at 1 MHz. The polyfluorinated films showed good transparency in the visible‐light region, with a cutoff wavelength as low as 302 nm and transmittance higher than 70% at 450 nm. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 103: 1442–1449, 2007  相似文献   

17.
2‐(4‐Aminophenyl)‐5‐aminopyrimidine (4) is synthesized via a condensation reaction of vinamidium salts and amidine chloride salts, followed by hydrazine palladium catalyzed reduction. A series of novel homo‐ and copolyimides containing pyrimidine unit are prepared from the diamine and 1,4‐phenylenediamine (PDA) with pyromellitic dianhydride (PMDA) or 3,3′,4,4′‐biphenyl tertracarboxylic dianhydride (BPDA) via a conventional two‐step thermal imidization method. The poly(amic acid) precursors had inherent viscosities of 0.97–4.38 dL/g (c = 0.5 g/dL, in DMAc, 30°C) and all of them could be cast and thermally converted into flexible and tough polyimide films. All of the polyimides showed excellent thermal stability and mechanical properties. The glass transition temperatures of the resulting polyimides are in the range of 307–434°C and the 10% weight loss temperature is in the range of 556–609°C under air. The polyimide films possess strength at break in the range of 185–271 MPa, elongations at break in the range of 6.8–51%, and tensile modulus in the range of 3.5–6.46 GPa. The polymer films are insoluble in common organic solvents, exhibiting high chemical resistance. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102: 5871–5876, 2006  相似文献   

18.
A CF3‐containing diamine, 4,4′‐bis(4‐amino‐2‐trifluoromethylphenoxy)benzophenone ( 2 ), was synthesized from 4,4′‐dihydroxybenzophenone and 2‐chloro‐5‐nitrobenzotrifluoride. Imide‐containing diacids ( 3 and 5Ba – 5Bg ) were prepared by the condensation reaction of aromatic diamines and trimellitic anhydride. Then, two series of novel soluble aromatic poly(amide imide)s (PAIs; 6Aa – 6Ak and 6Ba – 6Bg ) were synthesized from a diamine ( 4Aa – 4Ak or 2 ) with the imide‐containing diacids ( 3 and 5Ba – 5Bg ) via direct polycondensation with triphenyl phosphate and pyridine. The aromatic PAIs had inherent viscosities of 0.74–1.76 dL/g. All of the synthesized polymers showed excellent solubility in amide‐type solvents, such as N‐methyl‐2‐pyrrolidone and N,N‐dimethylacetamide (DMAc), and afforded transparent and tough films by DMAc solvent casting. These polymer films had tensile strengths of 90–113 MPa, elongations at break of 8–15%, and initial moduli of 2.0–2.9 GPa. The glass‐transition temperatures of the aromatic PAIs were in the range 242–279°C. They had 10% weight losses at temperatures above 500°C and showed excellent thermal stabilities. The 6B series exhibited less coloring and showed lower yellowness index values than the corresponding 6A series. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102:3641–3653, 2006  相似文献   

19.
Two isophthalic polyesters from 4,4′‐(1‐hydroxyphenylidene)diphenol (BAP/ISO) and 4,4′‐(9‐fluorenylidene)diphenol (BF/ISO), and three different copolyesters containing 75, 50, and 25 mol % of BAP/ISO were synthesized by interfacial polycondensation. This preparation method yielded polymers and copolymers that produced flexible and transparent films when they were cast from solution. Proton NMR spectrometry studies showed that the isophthalic copolyesters were obtained as random copolymers with differences in comonomer composition no larger than 2.5 mol % with respect to the expected compositions. Wide‐angle X‐ray diffraction measurements indicated that all the polyesters and copolyesters were amorphous. The copolyesters showed amorphous patterns with maxima that fell between those of the polyesters. It was also found that thermal properties such as glass‐transition temperature, onset of decomposition temperature, thermal stability, dynamic mechanical storage modulus, and maximum on the α‐transition of the damping factor tan δ of BF/ISO were higher than those of BAP/ISO. The values of these thermal properties in the copolyesters fell between those of the polyesters and were dependent on the amounts of BF/ISO and BAP/ISO present in the copolyester in a linear fashion. Therefore, the thermal properties of a given copolyester can be predicted directly from the comonomers' composition. Overall, it shows that the interfacial polycondensation method is suitable to obtain these copolyesters in a controlled manner and that their properties can be tailored to be between those of the homopolyesters. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 86: 2515–2522, 2002  相似文献   

20.
The self‐assembled rigid supramolecular nanoplatelets (SN) from Pluronic polymers with various lengths of polyethylene oxide (PEO) and β‐cyclodextrin have reinforced the soy protein isolate (SPI)‐based biodegradable plastics in terms of strength and modulus but at the expense of elongation. Meanwhile, the water resistance, which limited the application of the SPI plastics, was also enhanced. The structure and properties of nanocomposites were characterized by X‐ray diffraction, differential scanning calorimetry (DSC), scanning electron microscopy (SEM), tensile test, and water uptake test. The low loading of nanoplatelets was able to disperse into SPI matrix homogeneously, which resulted in reinforcement in nanocomposites. With an increase of nanoplatelets loading, the repulsion between nanoplatelets and SPI matrix occurred, accompanying with the formation of rectangle objects, resulted in a decrease of mechanical performance of the nanocomposites. The nanoplatelets with longest free PEO segments produced highest strength with least loss of elongation by virtue of enhanced association with SPI matrix mediated by PEO segments. Meanwhile, the nanoplatelets with moderate length of free PEO segments showed optimal water resistance. Herein, the reinforcing function of a supramolecular nanoplatelet, similar to the structure of layered silicate, was verified. © 2007 Government of Canada. Exclusive worldwide publication rights in the article have been transferred to Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号