首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Dielectric relaxation behavior of multiwalled carbon nanotube reinforced butyl rubber composites has been studied as a function of variation in filler in the frequency range of 20–2 × 106 Hz. The effect of variation in filler loadings on the complex and real parts of impedance was distinctly visible, which has been explained on the basis of interfacial polarization of fillers in a heterogeneous medium and relaxation dynamics of polymer chains in the vicinity of fillers. The electric modulus formalism has been used to further investigate the conductivity and relaxation phenomenon. The frequency dependence of AC conductivity has been investigated by using Percolation theory. The phenomenon of percolation in the composites has been discussed based on the measured changes in electric conductivity and morphology of composites at different concentrations of the filler. The percolation threshold as studied by AC conductivity occurred in the vicinity of 6–8 phr of filler loading. Scanning electron microscope microphotographs showed agglomeration of the filler above this concentration and formation of a continuous network structure. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

2.
The dielectric relaxation characteristics of microcellular EPDM vulcanizates has been studied as a function of variation in filler and blowing agent loadings in the frequency range of 100–106 Hz. The dielectric constant ε′ increases with increasing filler loadings at all frequencies. This has been explained on the basis of interfacial polarization of fillers in a heterogeneous medium. The effect of variation in filler and blowing agent loadings on the complex and real parts of impedance was distinctly visible. Which has been explained on the basis of relaxation dynamics of polymer chains in the vicinity of fillers. The phenomenon of percolation in the composites has been discussed based on the measured changes in electric conductivity and morphology of composites at different concentrations of the filler. The percolation threshold as studied by DC conductivity occurred near 40 phr of filler loading. SEM microphotographs showed agglomeration of the filler above this concentration and formation of a continuous network structure. POLYM. COMPOS., 28: 657–666, 2007. © 2007 Society of Plastics Engineers  相似文献   

3.
The frequency dependent dielectric relaxation behavior of conductive carbon black reinforced chlorosulfonated polyethylene (CSM) vulcanizates has been studied for different filler loadings in the frequency range of 102–106 Hz over a wide range of temperatures (30–120°C). The effects of filler loadings on the dielectric permittivity (ε′), dielectric loss tangent (tan δ), impedance, and electrical conductivity were studied. The variation of the dielectric permittivity with the filler loadings was explained on the basis of interfacial polarization of the filler in the polymer matrix. The frequency dependence of ac conductivity has been investigated using percolation theory. The effect of filler loading on the complex and real parts of impedance was clearly observed, which can be explained on the basis of relaxation dynamics of polymer chains in the vicinity of fillers. The percolation threshold occurred near 30 phr of filler loading. Scanning electron microphotographs showed the agglomeration of the filler on and above these filler loadings. Additionally, the effect of temperature on dielectric loss tangent, dielectric permittivity, ac conductivity, and Nyquist plot of conductive black reinforced CSM vulcanizates has been studied. POLYM. COMPOS., 2010. © 2009 Society of Plastics Engineers  相似文献   

4.
Dynamic mechanical analysis and dielectric relaxation spectra of exfoliated nano graphite reinforced flouroelastomer composites were used to study their relaxation behavior as a function of temperature (−80°C to +40°C) and frequency (0.01 to 105 Hz). The effect of filler loadings on glass transition temperature was marginal for all the composites and Tg value was in the narrow range of 7.8–8.4°C, which has been explained on the basis of relaxation dynamics of polymer chains in the vicinity of fillers. Strain‐dependent dynamical parameters were evaluated at dynamic strain amplitudes of 0.01–10%. The nonlinearity in storage modulus has been explained on the concept of filler‐polymer interaction and filler aggregation of the nano graphite platelets. The variation in real and complex part of impedance with frequency has been studied as a function of filler. The percolation of the nano graphite as studied by conductivity measurements is also reported. POLYM. COMPOS., 2009. © 2008 Society of Plastics Engineers.  相似文献   

5.
The effect of addition of fillers (carbon black (CB), carbon silica dual phase filler (CSDPF), and nanoclays) on the relaxation behavior of chlorobutyl vulcanizates has been studied. The primary relaxation (α‐transition, the glass transition) was studied by dynamic mechanical analysis as a function of temperature (?60 to +100°C) and positron annihilation life time spectroscopy (?70 to +110°C). Irrespective of the filler and its loading, all the composites showed the glass transition temperature in the range of –29 to –33°C, which was explained on the basis of relaxation chain dynamics of polyisobutylene in the vicinity of fillers. The secondary relaxation (α* or β relaxation) was studied using dielectric relaxation spectra in the frequency range of 100–106 Hz. Nanoclays had a profound influence on the secondary relaxation, whereas CSDPF and CB had a marginal effect. The nonlinear strain dependent dynamical parameters were also evaluated at double strain amplitudes of 0.07–5%. The nonlinearity in tan δ and storage modulus has been explained on the concept of filler–polymer interactions and the interaggregate attraction (filler networking). The “percolation limit” of the fillers in the composites has been studied by DC conductivity measurements. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 3161–3173, 2006  相似文献   

6.
The dielectric relaxation characteristics of conductive carbon black (CCB) reinforced ethylene acrylic elastomer (AEM) vulcanizates have been studied as a function of frequency (101–106 Hz) at different filler loading over a wide range of temperatures (30–120°C). The effect of filler loadings on the dielectric permittivity (ε′), loss tangent (tan δ), complex impedance (Z*), and electrical conductivity (σac) were studied. The variation of ε′ with filler loading has been explained based on the interfacial polarization of the fillers within a heterogeneous system. The effect of filler loading on the imaginary (Z″) and real (Z′) part of Z* were distinctly visible, which may be due to the relaxation dynamics of polymer chains at the polymer–filler interface. The frequency dependency of σac has been investigated using percolation theory. The phenomenon of percolation in the composites has been discussed in terms of σac. The percolation threshold (?crit) occurred in the range of 20–30 phr (parts per hundred) of filler loading. The effect of temperature on tan δ, ε′, σac, and Nyquist plots of CCB‐based AEM vulcanizates has been investigated. The CCB was uniformly dispersed within the AEM matrix as studied from the transmission electron microscope (TEM) photomicrographs. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

7.
Dynamic mechanical analysis and dielectric relaxation spectra of conductive carbon black reinforced microcellular EPDM vulcanizates were used to study the relaxation behavior as a function of temperature (−90 to +100°C) and frequency (0.01–105 Hz). The effect of filler and blowing agent loadings on dynamic mechanical and dielectric relaxation characteristics has been investigated. The effect of filler and blowing agent loadings on glass transition temperature was marginal for all the composites (Tg value was in the range of −39 to −35°C), which has been explained on the basis of relaxation dynamics of polymer chains in the vicinity of fillers. Strain-dependent dynamical parameters were evaluated at dynamic strain amplitudes of 0.07–5%. The nonlinearity in storage modulus has been explained based on the concept of filler–polymer interaction and interaggregate attraction (filler networking) of carbon black. The variation in real and complex part of impedance with frequency has been studied as a function of filler and blowing agent loading. Additionally, the effect of crosslinking on the dielectric relaxation has also been reported. POLYM. ENG. SCI., 47:984–995, 2007. © 2007 Society of Plastics Engineers  相似文献   

8.
Dielectric relaxation spectra of conductive carbon black reinforced microcellular EPDM vulcanizates were used to study their relaxation behavior in the frequency range of 0.01–105 Hz over a wide range of temperature from 30 to 120°C. The effect of variation in filler loading and blowing agent loading (density) on dielectric characteristics such as impedance, dielectric constant, and conductivity has been studied. The experimental results show that the relative dielectric permittivity of the composites depends strongly on the extent of carbon black and blowing agent concentrations. The frequency dependence of AC conductivity has been investigated by using Percolation theory. The permittivity and conductivity of the microcellular composites have been analyzed based on scaling theory at increasing temperatures. The applicability of Lichtenecker‐Rother's “rule of mixture” to describe the complex permittivity of the composite has also been investigated. Irrespective of the blowing agent loading and temperature, the percolation threshold as studied by DC conductivity was found to be at 40 phr loading of the filler. Scanning electron microphotographs showed agglomeration of the filler above this concentration and formation of a continuous network structure. POLYM. COMPOS., 2008. © 2008 Society of Plastics Engineers  相似文献   

9.
Visco-elastic and dielectric spectra of multiwalled carbon-nanotube reinforced silicon elastomer nanocomposites were used to study relaxation behavior. SEM photomicrographs shows well dispersion of MWCNT in elastomer matrix. In visco-elastic analysis primary relaxation was studied as a function of temperature (?100 to 100 °C) at frequency 1Hz and strain 1 %. The effect of MWCNT loadings on storage modulus, loss modulus, and loss tangent has been studied. The non-linearity in loss tangent, storage modulus and loss modulus was explained on the basis of MWCNT-elastomer interaction and the inter-aggregate attraction of MWCNT. The secondary β relaxation was studied using dielectric relaxation spectra in the frequency range of 0.1 Hz to 106 Hz. The effect of MWCNT loadings on the complex and real parts of impedance was distinctly visible which has been explained on the basis of interfacial polarization of fillers in a heterogeneous medium and relaxation dynamics of polymer chains in the vicinity of fillers. The dielectric formalism has been utilized to further investigate the conductivity and relaxation phenomenon. The ‘percolation limit’ of the MWCNT in the silicon elastomer was found to be in the range of 4 phr loading.  相似文献   

10.
The dielectric relaxation behavior of different conducting carbon black‐filled ethylene‐octene copolymer (EOC) vulcanizates prepared by melt‐mixing method has been studied as a function of frequency (100 Hz–5 MHz) over a wide range of temperatures (25–100°C). The effect of filler loading and frequency on AC conductivity, dielectric permittivity, impedance, and dielectric loss tangent (tanδ) has been studied. The nature of variation of the dielectric permittivity with the filler loadings was explained on the basis of interfacial polarization of the filler in the polymer matrix. The effect of filler loading on the real and complex part of the impedance was explained by the relaxation dynamics of the polymer chains in the vicinity of the fillers. The effect of filler and temperature on dielectric loss tangent, dielectric permittivity, AC conductivity, and Nyquist plot was also reported. The bound rubber (BR) value increases with increase in filler loading suggesting the formation of strong interphase, which is correlated with dielectric loss. Thermal activation energy (Ea) was found to be decreasing with the temperature, which follows the Arrhenius relation: τb = τ0 exp(−Ea/KBT) where τb is the relaxation time for the bulk material. From the plot of lnτb versus inverse of absolute temperature (1/T), the activation energies (Ea) were found to be 0.37 and 0.44eV, respectively. The percolation threshold was observed with 40 phr carbon black loading. POLYM. COMPOS., 37:342–352, 2016. © 2014 Society of Plastics Engineers  相似文献   

11.
This work is concerned with the preparation and characterization of composite materials prepared by compression molding of a mixture of aluminum flakes and nylon 6 powder. The electrical conductivity, density, hardness and morphology of composites were investigated. The electrical conductivity of the composites is < 10−11 S/cm unless the metal content reached the percolation threshold, beyond which the conductivity increased markedly by as much as 1011. The volume fraction of conductive filler at the percolation threshold was calculated from experimental data, by fits to functions predicted by the percolation theory. Decreasing the average particle diameter of filler leads to increased percolation threshold (it varies from 23 to 34 vol% for the three different fillers studied) and decreased maximal conductivity of composites. The density of the composites was measured and compared with values calculated assuming different void levels within the samples. Furthermore, it is shown that for certain sizes of particle filler, the hardness decreases initially with the increase of metal concentration, possibly because of poor surface contact with the nylon matrix, but, starting from a certain value, there is a hardness increase. For the smallest particle filler, the hardness of samples is not influenced by the presence of the filler.  相似文献   

12.
The effect of the types of carbon black on the physicomechanical, dynamic mechanical, and dielectric relaxation spectra in chlorobutyl vulcanizates was studied. The primary relaxation (α transition, the glass transition) was studied by dynamic mechanical analysis as a function of temperature (?60 to +100°C) and by positron annihilation lifetime spectroscopy (?70 to +100°C). Irrespective of the type of carbon black that was used, all composites showed glass‐transition temperatures in the range of ?29 to ?33°C, which was explained on the basis of the relaxation dynamics of polyisobutylene chains in the vicinity of the fillers. The secondary relaxation (α* or β relaxation) was studied using dielectric relaxation spectra in the frequency range of 100–106 Hz. The nonlinear strain dependent dynamical parameters (Payne effect) were also evaluated at dynamic strain amplitudes of 0.07–5%. The nonlinearity in the tan δ and storage modulus was explained by the concept of filler–polymer interactions and the interaggregate attraction (filler networking). © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102: 1809–1820, 2006  相似文献   

13.
Dynamic mechanical analysis and dielectric relaxation spectra of conductive carbon black reinforced chlorosulfonated polyethylene (CSM) composites were used to study their relaxation behavior as a function of temperature and frequency, respectively. A marginal increase in glass transition temperature has been observed upto 30 phr carbon black filled polymer composite, beyond which it decreases, which has been explained on the basis of aggregation of filler particles in the polymer matrix. The strain dependent dynamical parameters were evaluated at dynamic strain amplitudes of 0.1–200%. The nonlinearity in storage modulus increases with increase in filler loading. It can be explained on the basis of filler–polymer interaction and aggregation of the filler particulates. The frequency dependent dynamical mechanical analysis has also been studied at frequency range of 0.1–100 Hz. The variation in real and complex part of impedance with frequency has been studied as a function of filler loading. The effect of filler loading on ac conductivity has been observed as a function of frequency. An increase in conductivity value has been observed with increase in filler loading. This can be explained on the basis of formation of conducting paths between filler particulates. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

14.
In this article, a statistical‐thermodynamic formula based on a new approach has been developed to predict electrical conductivity of carbon‐filled composites used for bipolar plate of proton exchange membrane fuel cell. In this model, based on percolation threshold phenomenon, it is assumed that the relationship between electrical conductivity of composite and filler volume fraction follows a sigmoidal equation. Afterwards, the four effective factors on composite conductivity including filler electrical conductivity, filler aspect ratio, wettability, as well as interface contact resistance are replaced upon constant parameters of sigmoidal function. In order to test the model, some single‐filler composites have been manufactured by using the phenolic resin as binder and graphite (G), expanded graphite (EG), and carbon fiber (CF) as fillers. The fitting quality is measured by R‐square, adjusted R‐square, SSE, and RMSE parameters. The results showed that there is a noteworthy agreement between the model and the experimental data. Compared to the other models, this model can be used for more types of fillers. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

15.
BACKGROUND: The effects of filler geometry are important for understanding the internal structure and physical properties of polymer composites. To investigate the effects of filler geometry on electrical conductivity as well as morphological and rheological properties, three types of polycarbonate (PC) composites were prepared by melt compounding with a twin‐screw extruder. RESULTS: The electrical conductivity of PC/carbon black (CB) and PC/graphite (carbon) nanofibre (CNF) composites did not show a percolation threshold through the entire filler loading ranges. However, PC‐blend‐carbon nanotube (CNT) composites showed a percolation electrical threshold for a filler loading of 1.0 to 3.0 wt% and their maximum electrical conductivity approached 10?3 S m?1. PC‐blend‐CB and PC‐blend‐CNF composites showed Newtonian behaviour like pure PC matrix, but PC‐blend‐CNT composites showed yield stress as well as increased storage modulus and strong shear thinning behaviour at low angular frequency and shear rate due to strong interactions generated between CNT–CNT particles as well as PC molecules and CNT particles on the nanometre scale. CONCLUSIONS: The electrical conductivity of the PC composites with different carbon constituents was well explained by the continuous network structure formed between filler particles. The network structure was confirmed by the good dispersion of fillers as well as by the yield stress and solid‐like behaviour observed in steady and dynamic shear flows. Copyright © 2009 Society of Chemical Industry  相似文献   

16.
AC dielectric properties and thermally stimulated polarization (TSP) and depolarization (TSD) currents were studied in a series of CaCO3-filled polypropylene composites. The filler content (0 to 50 weight percent) and the average particle size (3.0 to 16.1 μm) at constant filler content (30 weight percent) were varied in separate groups of samples. In a third group of samples the filler (20 to 40 weight percent) was surface treated with stearates. The AC dielectric behavior of composites containing untreated fillers is largely determined by a small amount of adsorbed water. Upon heating, the dielectric properties show maxima (increasing with decreasing frequency) which disappear on cooling. In the case of stearate-treated fillers the dielectric loss level is higher, the dispersion and loss curves on heating reflect a combination of dipolar and protonic processes with water desorption. In the dry state the onset of an audio frequency relaxation process is observed in the pre-melting zone. The thermally stimulated currents of the composites containing treated and untreated fillers are also different. In the case of the untreated fillers the TSP curves show maxima indicating water desorption which are increasingly intense and roughly exponential with filler content. The high temperature conductivity and the intensity of the pre-melting depolarization peak pass through a minimum as a function of filler content. Above 20 weight percent filler content the activation energy of high temperature conductivity decreases. In the case of the surface treated samples, the thermally stimulated response is different for “wet” and dried samples. The dry samples exhibit a relaxation between the amorphous and crystalline transitions of the matrix polymer which is probably due to interfacial relaxation caused by the enhanced surface conductivity of the stearate-treated fillers.  相似文献   

17.
A comparative study of ethylene vinyl acetate nanocomposites based on expanded graphite, multiwalled carbon nanotubes, and carbon nanofibers has been carried out to investigate the effect of different carbon nanofillers on the electrical properties of the corresponding composites. The composites were prepared by ultrasonic dispersion of fillers in ethylene vinyl acetate solution, followed by casting and compression molding. The dependence of AC conductivity and dielectric constant on the frequency and filler concentration was investigated. Carbon nanofibers provided maximum conductivity as well as lowest percolation threshold (8.2 vol%) compared to expanded graphite and multiwalled carbon nanotubes filled composites. The improvement in both electrical conductivity and dielectric constant was attributed to the high filler aspect ratio and the formation of conducting networks. The relationship of dielectric constant with filler volume fraction for all the composite systems is estimated using a power law. The pressure sensing capability of the composites at respective percolation thresholds was also compared. POLYM. COMPOS., 2010. © 2009 Society of Plastics Engineers  相似文献   

18.
Adding conductive carbon fillers to insulating resins increases the composite electrical and thermal conductivity. Often, enough of a single type of carbon filler is added to achieve the desired conductivity while still allowing the material to be molded into a bipolar plate for a fuel cell. In this study, various amounts of three different carbons (carbon black, synthetic graphite particles, and carbon fiber) were added to Vectra A950RX liquid‐crystal polymer. The rheological properties of the resulting single‐filler composites were measured. In addition, the rheological properties of composites containing combinations of different carbon fillers were studied via a factorial design. In all cases, the viscosity increased with increasing filler volume fraction and followed a shear‐thinning power‐law model. The factorial design results indicated that each of the single fillers and all the filler combinations caused a statistically significant increase in the composite viscosity when compared at a shear rate of 500 s?1 or at a stress of 105 Pa. For composites containing synthetic graphite particles and/or carbon fiber, the viscosity variation with the volume fraction of carbon followed a modified Maron–Pierce equation. When compared at a constant volume fraction of carbon, composites containing carbon black showed viscosity enhancement above and beyond that shown by the other composites. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

19.
Conductive fillers are often added to thermoplastic polymers to increase the resulting composite's electrical conductivity (EC) which would enable them to be used in electrostatic dissipative and semiconductive applications. The resulting composite also exhibits increased tensile modulus. The filler aspect ratio plays an important role in modeling composite EC, and tensile modulus. It is difficult to measure the filler aspect ratio after the manufacturing process (often extrusion followed by injection molding) in the composite, especially when nanomaterials are used. The EC percolation threshold is a function of the filler aspect ratio; hence, knowledge of this percolation threshold provides a means to extract the filler aspect ratio. In this study, the percolation threshold of the composite was determined from EC measurements and modeling, which in turn was used to determine the filler aspect ratio for tensile modulus modeling. Per the authors' knowledge, this approach has not been previously reported in the open literature. The fillers; carbon black (CB: 2–10 wt %), multiwalled carbon nanotubes (CNT: 0.5–8 wt %), or exfoliated graphite nanoplatelets (GNP: 2–12 wt %); were added to polycarbonate (PC) and the resulting composites were tested for EC and tensile modulus. With the filler aspect ratio determined from EC values for CNT/PC and GNP/PC composites, the three‐dimensional randomly oriented fiber Halpin‐Tsai model accurately estimates the tensile modulus for the CNT/PC composites and the Nielsen model predicts the tensile modulus well for the CB/PC and GNP/PC composites. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

20.
The synergetic effect of multiwalled carbon nanotubes (MWNTs) and carbon fibers (CFs) in enhancing the electrical conductivity of nylon 6 (PA6) composites was investigated. To improve the compatibility between the fillers and the PA6 resin, we grafted γ‐aminopropyltriethoxy silane (KH‐550) onto the MWNTs and CFs after carboxyl groups were generated on their surface by chemical oxidation with nitric acid. Fourier transform infrared spectroscopy and thermogravimetric analysis proved that the KH‐550 molecules were successfully grafted onto the surface of the MWNTs and CFs. Scanning electron microscopy and optical microscopy showed that the obtained modified fillers reduced the aggregation of fillers and resulted in better dispersion and interfacial compatibility. We found that the electrical percolation threshold of the MWNT/PA6 and CF/PA6 composites occurred when the volume fraction of the fillers were 4 and 5%, respectively. The MWNT/CF hybrid‐filler system exhibited a remarkable synergetic effect on the electrically conductive networks. The MWNT/7% CF hybrid‐filler system appeared to show a second percolation when the MWNT volume fraction was above 4% and a volume resistivity reduction of two orders of magnitude compared with the MWNT/PA6 system. The mechanical properties of different types of PA6 composites with variation in the filler volume content were also studied. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40923.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号