首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Polyethylene imines having nitro substituent azobenzene side chain group with different methylene spacer groups (PEImN) were successfully synthesized and characterized by differential scanning calorimetry, polarized optical microscopic, and X‐ray diffraction analysis. All synthesized polyethylene imines showed liquid crystalline properties and the glass transition temperature (Tg) of PEImN decreased as the number of methylene spacers increased. Melting temperatures (Tm) of synthesized PEImN showed an odd‐even effect. Photochemical, thermo‐optical, as well as photo alignment behavior of PEImN were investigated and out‐of‐plane orientational behavior of polymeric films was dependent on number of methylene spacers and polyethylene imines having higher number of methylene spacers (six or more) showed high order parameter values that revealed the well pronounced tendency for the development of out‐of‐plane order from random state on annealing. And the molecular orientation of PEImN between random and out‐of‐plane structures has been achieved by the combination of thermal and photochemical processes. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

2.
A commercial thermotropic liquid crystalline polymer (LCP), Vectra A950, was injection molded into rectangular sheets of thickness ranging from 1 to 4 mm. By changing the thickness of the mold, the shear rate experienced by the TLCP melt in the mold could be varied. The 1‐mm test sample was highly anisotropic while that with larger thickness (4 mm) was less anisotropic. X‐ray diffraction profile at various depths for each of the test sample corresponded to the degree in the fiber orientation present in the test samples. The anisotropy can be described macroscopically by measuring the tensile strength and modulus in the longitudinal and transverse direction. The ratio between the longitudinal and transverse property decreases proportionally to the thickness of the test sample. This reduction corresponded to the reduction in the shear field as the thickness of the mold was increased. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 88: 1713–1718, 2003  相似文献   

3.
Six chiral monomers ( M 1? M 6), and their corresponding polymers ( P 1, P 4) and elastomers ( P 2, P 3, P 5, P 6) derived from chiral mesogenic crosslinking agent were synthesized. The chemical structures of M 1? M 6 were confirmed by FTIR and 1H NMR spectroscopy. The structure‐property relationships of M 1? M 6 and P 1? P 6 were discussed. Their mesomorphic properties and phase behavior were investigated by differential scanning calorimetry (DSC), thermogravimetric analyses (TGA), polarizing optical microscopy (POM), and X‐ray diffractometer (XRD) measurements. All monomers obtained, except M 2 and M 5, showed typical oily streaks texture and focal conic texture of cholesteric phase on heating and cooling cycles. The selective reflection of cholesteric monomers and elastomers shifted to the short wavelength region with increasing temperature. The elastomers P 2 and P 5 did not reveal the mesomorphic properties, and P 3 and P 6 showed cholesteric phase. TGA showed that P 1? P 6 had a high thermal stability. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

4.
Liquid crystalline chitin/poly(acrylic acid) composite, with its unique optical properties, was fabricated by the free‐radical photopolymerization of acrylic acid in an aligned mesophase. Alignment of the mesophase was achieved by unidirectional shearing. The developed composites, coated on calcium fluoride (CaF2) substrate, were transparent, and the alignment was retained depending on the mesophase composition of the ternary dispersion (chitin microfibrils, water, acrylic acid). According to studies from polarized FTIR spectroscopy, both the degree of orientation and the molecular interactions were strongly affected by respective mesophase behavior. The average molecular chains of chitin microfibrils were oriented along the shear direction. A high dichroic ratio value of about 25, observed in composites of chitin/poly(acrylic acid) with a w/w ratio of 55:45, opens an interesting avenue to prepare a new chitin‐based optically anisotropic composite. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 90: 1932–1940, 2003  相似文献   

5.
To investigate the effects of photoisomerizable azobenzene segments on the liquid‐crystalline characteristics and thermal properties of polymers, a series of liquid‐crystalline homopolymers and copolymers with azobenzene segments was synthesized. The azobenzene contents of the copolymers were estimated with elemental analysis. The photoisomerization of the azobenzene derivatives was studied with ultraviolet–visible (UV–vis) spectroscopy. The UV–vis absorption of the copolymers was found to be parallel with the content of the azobenzene segments. UV irradiation was found to cause a decrease in the copolymer transmittance around 355 nm due to the photoinduced isomerization from entgegen (E) to zusammen (Z). The phase‐transition temperatures and molecular weights of the polymers were investigated with differential scanning calorimetry and gel permeation chromatography, respectively. The variation in the phase‐transition temperature of the homopolymers before and after UV (365 nm) irradiation was investigated. The bended Z structure was found to disturb the order of the orientation of liquid crystals and to lower the phase‐transition temperature. The appearance of the polymer film was changed from opaque to clear after sufficient UV irradiation. The image recording of the polymer films was achieved after UV irradiation through a mask with pictures. The stability and reliability of the Nematic‐Isotropic phase transition of the homopolymers was evaluated with repeated cycles of 365‐nm UV irradiation and heating at 130°C. After the recycle phase transition was repeated nine times, no significant decay in the response and transmittance could be found. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 2006  相似文献   

6.
BACKGROUND: Owing to the unusual structural rearrangement of polychloromethylthiirane (PCMT) at room temperature, it has not been used as the main‐chain backbone of side‐chain liquid‐crystalline polymers (SLCPs). However, it has been observed that PCMT has a relatively stable and clear structure under special conditions. Therefore, we attempted to synthesize SLCPs using PCMT as main‐chain backbone and investigated their thermal behavior. RESULTS: New polymers, poly[1‐({(4‐methoxyazobenzene‐4′‐oxy)alkyl}thio)‐2,3‐epithiopropane], in which the number of methylene units in the alkyl group is 4, 5 or 6, were prepared by means of reactions of corresponding (4‐methoxyazobenzene‐4′‐oxy)alkylthiols with PCMT. The structures of these compounds were confirmed using elemental analysis and 1H NMR spectroscopy. The substitution ratios of the copolymers with 4, 5 and 6 methylene units in the alkyl group were 56, 75 and 80%, respectively. Differential scanning calorimetry measurements and polarized optical microscopy observations showed that the resulting copolymers exhibited thermotropic liquid‐crystalline mesomorphism with nematic phase except for the copolymer with a 56% substitution ratio. The decomposition temperature of all the synthesized copolymers was near 195 °C. CONCLUSION: This investigation has demonstrated that PCMT polymerized for 8 h has the ability to act as a suitable main‐chain backbone for SLCPs. Moreover, SLCPs could be obtained only by the reaction of PCMT with thiolate salt containing mesogenic groups. The substitution ratios increased with increasing number of methylene groups in the spacer. Copyright © 2009 Society of Chemical Industry  相似文献   

7.
Poly(4‐vinylpyridine)s (P4VPs) fully and partially quaternized with dialkyloxyterphenyl groups were synthesized and characterized. These new polymers developed both liquid‐crystalline (LC) properties and a light emission (luminescence) in the blue region. The mesomorphic behavior of the polymers was initially characterized by differential scanning calorimetry and polarizing optical microscopy and was further corroborated by X‐ray diffraction analyses. The X‐ray diffraction patterns showed in the low‐angles region several equidistant diffraction peaks (d001, d002, d003, …) and in the wide‐angles region a broad peak typical of nonordered mesophases. From d001 and the length of the monomers, we deduced that the molecular arrangement in the mesophase corresponded to a double‐layered stacking of molecules with mesogens tilted with respect to the smectic plane and the backbones sandwiched between. In this arrangement, the different parts of mesogens are segregated from one another in layered domains. The longer smectic periods observed for copolymers indicated that the nonsubstituted pyridine cycles were sandwiched between two smectic layers. The emission spectra of these polymers were characterized by a broad signal centered at 365 nm. The combination of LC properties with luminescence in the polymers is interesting for the preparation of thin films with aligned emitters, particularly for linearly polarized light emission. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

8.
A series of new cholesteric liquid‐crystalline polysiloxanes ( P1 – P5 ) derived from menthyl groups were synthesized. The chemical structures of the monomers and polymers were characterized with Fourier transform infrared, 1H‐NMR, 13C‐NMR, and elemental analyses. The mesomorphic properties and thermal behavior were investigated with differential scanning calorimetry, polarizing optical microscopy, thermogravimetric analysis, and X‐ray diffraction measurements. The influence of the polymer structure on the thermal behavior was discussed. The monomer diosgeninyl 4‐allyloxybenzoate exhibited a typical cholesteric oily‐streak texture and a focal‐conic texture. Polymers P1 – P5 showed thermotropic liquid‐crystalline properties. P1 displayed a smectic fan‐shaped texture, P2 – P5 showed a cholesteric Grandjean texture, and P6 and P7 did not show mesomorphic properties. The experimental results demonstrated that the glass‐transition temperature and the clearing temperature decreased, and the mesomorphic properties weakened with an increasing concentration of menthyl units. Moreover, P1 – P5 exhibited wide mesophase temperature ranges and high thermal stability. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102:5559–5565, 2006  相似文献   

9.
The process of injection‐molding net‐shape parts from thermotropic liquid‐crystalline polymers results in a skin‐core macrostructure. The underlying orientation in the core and the skin may differ both in magnitude and direction. A combination of near‐edge X‐ray absorption fine structure (NEXAFS) spectroscopy and two‐dimensional wide‐angle X‐ray scattering (2D WAXS) in transmission was used to characterize the orientation in injection‐molded plaques fabricated from thermotropic liquid‐crystalline copolyesters based on either 4,4′‐dihydroxy‐α‐methylstilbene or 6‐hydroxy‐2‐naphthoic acid/6‐hydroxybenzoic acid. NEXAFS is presented as a noninvasive in situ means of determining surface layer orientation that samples to a depth of as little as 2 nm and does not require slicing or ultramicrotoming of the samples. The effects of various processing conditions on the surface orientation in the region of the centerline of square injection‐molded plaques are presented and discussed. Comparisons are made between orientation parameters obtained by 2D WAXS in transmission, which is dominated by the microstructure in the core, and the NEXAFS technique. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 98: 2473–2480, 2005  相似文献   

10.
Diglycidyl ether of 3,3′,5,5′‐tetramethyl‐4,4′‐biphenyl (TMBPDGE) which has been found great applications in semiconductor packaging was synthesized. The liquid crystalline phases of diglycidyl ether of 4,4′‐dihydroxybiphenol (BPDGE) cured with phenol novolac (PN) were studied by wide angle X‐ray diffraction (WAXD) and polarized optical microscopy (POM). BPDGE was in situ copolymerized with TMBPDGE to improve its thermal and mechanical properties by means of the LC domains retained in the crosslinked networks. The results indicated that a nematic phase was formed and fixed with proper curing schedule when BPDGE was cured with PN that had no neighboring active hydrogens and the LC domains could also be efficiently embedded into the composite systems. Dynamic mechanical properties showed that epoxy networks containing LC domains displayed higher α‐relaxation temperature and linear elastic modulus traces. The impact toughness and Tg were improved with the addition of BPDGE. Scanning electron microscope observation of the fracture surfaces showed that there was a change in failure mechanism in the composite systems. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2007  相似文献   

11.
The synthesis of side chain cholesteric liquid‐crystalline polymers containing both 4‐cholesteryl‐4'‐acryloyloxybenzoate (MI) and 4‐methoxyphenyl‐4'‐acryloyloxybenzoate (MII) mesogenic side groups is described. The chemical structures of the obtained monomers and polymers are confirmed by Fourier transform infrared (FTIR) spectroscopy. The phase behavior and optical properties of the synthesized monomers and polymers were investigated by polarizing optical microscopy (POM), differential scanning calorimetry (DSC), and thermogravimetric analyses (TGA). The homopolymer IP reveals a cholesteric phase and VIIP displays a nematic phase. The copolymers IIP–VIP exhibit, respectively, cholesteric oily‐streak texture and focal‐conic texture. The fixation of the helical pitch and oily‐streak texture of the cholesteric phase is achieved by quenching, and polymer films with different reflection colors are obtained. The experimental results demonstrate that the glass transition temperature (Tg) and the melting temperature (Tm) of the copolymers IIP–VIP decrease, whereas the isotropization temperature (Ti) and the mesomorphic temperature range (ΔT) increase with increasing content of mesogenic MII units. TGA results indicate that the temperatures at which 5% mass loss occurred (T5wt%) of all copolymers are >245°C. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 88: 1936–1941, 2003  相似文献   

12.
Several poly(pyridinium salt)s containing various organic counterions and tetraoxyethylene units in their backbones were synthesized by either ring‐transmutation polymerization reaction of 4,4'‐(1,4‐phenylene)bis(2,6‐diphenylpyrylium tosylate) with bis(2‐(2‐(4‐aminophenoxy)ethoxy)ethyl) ether on heating in dimethyl sulfoxide or metathesis reaction of the tosylate polymer with the corresponding lithium or sodium salts in acetonitrile. Their chemical structures were determined by 1H‐NMR and 13C‐NMR spectroscopy, and elemental analyses. Their number‐average molecular weights and polydispersity indices were in the range of 34,000–52,000 and 1.14–1.38, respectively, as determined by gel permeation chromatography. They were characterized both for their thermotropic and lyotropic liquid‐crystalline properties by using differential scanning calorimetry and polarizing optical microscopy. As these polymers exhibited liquid‐crystalline phase both in the melt and in solutions, they are classified as an amphotropic class of ionic polymers. Their light‐emitting properties in a large number of organic solvents that ranged from nonpolar to polar solvents and in films cast from methanol and acetonitrile were also studied by using spectrofluorometry. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

13.
Novel aromatic poly(ether ketones) containing bulky lateral groups were synthesized via nucleophilic substitution reactions of 4,4′‐biphenol and (4‐chloro‐3‐trifluoromethyl)phenylhydroquinone (CF‐PH) with 1,4‐bis(p‐fluorobenzoyl)benzene. The copolymers were characterized by differential scanning calorimetry (DSC), wide‐angle X‐ray diffraction, and polarized light microscopy observation. Thermotropic liquid‐crystalline behavior was observed in the copolymers containing 40, 50, 60, and 70 mol % CF‐PH. The crystalline–liquid‐crystalline transition [melting temperature (Tm)] and the liquid‐crystalline–isotropic phase transition appeared in the DSC thermograms, whereas the biphenol‐based homopolymer had only a melting transition. The novel poly(aryl ether ketones) had glass‐transition temperatures that ranged from 143 to 151°C and lower Tm's that ranged from 279 to 291°C, due to the copolymerization. The polymers showed high thermal stability, and some exhibited a large range in mesophase stability. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 89: 1347–1350, 2003  相似文献   

14.
A new mesogenic crosslinking agent M‐1 was synthesized to minimize the perturbations of a nonmesogenic crosslinking agent for liquid crystalline elastomers. The synthesis of new side‐chain liquid crystalline elastomers containing a rigid mesogenic crosslinking agent M‐1 and a nematic monomer M‐2 is described by a one‐step hydrosilylation reaction. The chemical structures of the obtained monomers and elastomers were confirmed by 1H NMR and FTIR spectroscopy. The mesomorphic properties and phase behavior were investigated by differential scanning calorimetry, polarizing optical microscopy, and X‐ray diffraction measurements. The influence of the crosslinking units on the phase behavior is discussed. The elastomers containing less than 15 mol % of the crosslinking units showed elasticity, reversible phase transition, and nematic‐threaded texture. However, when the crosslinking density reached 21.6 mol %, the mesophase of polymer P‐8 disappears. The adoption of a mesogenic crosslinking agent diminishes the perturbation of a nonmesogenic crosslinking agent on mesophase of liquid crystalline elastomers, and isotropic temperature and a mesomorphic temperature range slightly decreased with increasing content of the crosslinking agent. In addition, X‐ray analysis shows nematic polydomain network polymers can transform into smectic monodomain by stress induction, leading to the orientation formation macroscopically. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 93: 1736–1742, 2004  相似文献   

15.
The oxidative polycondensation reaction conditions of 4‐[(pyridine‐3‐yl‐methylene) amino]phenol (4‐PMAP) were studied using H2O2, atmospheric O2, and NaOCl oxidants in an aqueous alkaline medium between 30°C and 90°C. Synthesized oligo‐4‐[(pyridine‐3‐yl‐methylene) amino] phenol (O‐4‐PMAP) was characterized by 1H‐, 13C NMR, FTIR, UV–vis, size exclusion chromatography (SEC), and elemental analysis techniques. The yield of O‐4‐PMAP was found to be 32% (for H2O2 oxidant), 68% (for atmospheric O2 oxidant), and 82% (for NaOCl oxidant). According to the SEC analysis, the number–average molecular weight, weight–average molecular weight, and polydispersity index values of O‐4‐PMAP was found to be 5767, 6646 g mol?1, and 1.152, respectively, using H2O2, and 4540, 5139 g mol?1, and 1.132, respectively, using atmospheric O2, and 9037, 9235 g mol?1, and 1.022, using NaOCl, respectively. According to TG and DSC analyses, O‐4‐PMAP was more stable than 4‐PMAP against thermal decomposition. The weight loss of O‐4‐PMAP was found to be 94.80% at 1000°C. Also, antimicrobial activities of the oligomer were tested against B. cereus, L. monocytogenes, B. megaterium, B. subtilis, E. coli, Str. thermophilus, M. smegmatis, B. brevis, E. aeroginesa, P. vulgaris, M. luteus, S. aureus, and B. jeoreseens. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102: 3327–3333, 2006  相似文献   

16.
A novel liquid crystalline polyester–polyurethane (LCPU) that contains polyester mesogenic units was synthesized in the present work. Through a careful investigation of the structure and morphology of the LCPU, it was found that the home‐synthesized LCPU is a highly birefringent thermotropic nematic liquid crystal. After being blended with bisphenol‐A epoxy, the liquid crystalline polymer can, simultaneously, improve the impact strength and the glass transition temperature as well as the tensile strength and the tensile modulus of the blends. It was proved to be an efficient toughening agent for epoxy without the expense of other properties. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 88: 783–787, 2003  相似文献   

17.
The controlled thermal release of aqueous solvent mixtures from polymeric gel particles was investigated. A new type of a polymeric gel consisting of a maleic anhydride/poly(ethylene glycol) condensation product as a crosslinking macromonomer and acrylamides was synthesized by solution or inverse emulsion polymerization for the investigation. Afterward a shell of crosslinked polystyrene was coated to stabilize this new kind of “microcontainer” for the application. This concept was shown as generally useful for various mixtures of organic solvents and water. The cloud point temperature of the polymer gel strongly depended on the following parameters: the type and content of organic cosolvent, the degree of polymerization and constituents of the polyester moiety, and the type and content of the comonomers. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2007  相似文献   

18.
Polyphenylene (PP) with NH2 side groups, namely, PFluNH 2 , was synthesized by the Pd‐catalyzed reaction of 2,5‐dibromoaniline with 9,9‐dihexylfluorene‐2,7‐diboronic acid bis(1,3‐propanediol) ester. The reaction of PFluNH 2 with 1‐hexyl‐1′‐(2,4‐dinitrophenyl)‐4,4′‐bipyridinium diiodide ( SaltBPy(I?) ) eliminated 2,4‐dinitroaniline to yield PPs with viologen (1,1′‐disubstituted 4,4′‐bipyridinium dications), PFluBPy(I?) . The reaction of PFluBPy(I?) with Li+TCNQ ? resulted in anion exchange between Cl ? and TCNQ ? , and yielded PFluBPy(TCNQ?) . The reaction of PFluBPy(TCNQ?) with the neutral TCNQ0 resulted in an interaction between TCNQ ? and TCNQ0, and yielded PFluBPy(TCNQ?‐TCNQ0) . Cyclic voltammetry measurements suggested that an electrochemical reduction of the viologen moiety and oxidation of the polymer backbone within PFluBPy(TCNQ?) and PFluBPy(TCNQ?‐TCNQ0) . Furthermore, this reaction was accompanied by electrochromism. The electric conductivities (σ) of the pellets molded from PFluBPy(TCNQ?) to PFluBPy(TCNQ?‐TCNQ0) were 2.7 × 10 ? 4 and 4.2 × 10 ? 4 Scm ? 1, respectively; these σ values were higher than that observed for PFluNH 2 (σ < 10 ? 8 Scm ? 1) due to the self‐doping in the polymers. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

19.
A series of crosslinked liquid crystalline polymers and corresponding uncrosslinked liquid crystalline polymers were prepared by graft copolymerization. Their liquid crystalline properties were characterized by differential scanning calorimetry, polarizing optical microscopy, and X‐ray diffraction measurements. The results showed that the crosslinking obtained in the isotropic state and the introduction of nonmesogenic crosslinking units into a polymeric structure could cause additional reduction of the clearing point (Ti) of the crosslinked polymers, compared with the corresponding uncrosslinked polymers. The crosslinked polymers (P‐2–P‐4) with a low crosslinking density exhibited cholesteric phases as did the uncrosslinked polymers. In contrast, a high crosslinking density made the crosslinked polymer P‐5 lose its thermotropic liquid crystalline property. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 91: 773–778, 2004  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号