首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The performance of white rice husk ash (WRHA) as filler for polypropylene (PP)/ethylene‐propylene‐diene terpolymer (EPDM) thermoplastic elastomer (TPE) composites was investigated. The composites with different filler loadings were prepared in a Brabender plasticorder internal mixer. Both unvulcanized and dynamically vulcanized composites were prepared. Mixing and vulcanization processes of the composites were monitored through the typical Brabender torque‐time curves. The mechanical properties and morphology of the composites were also studied. The Brabender torque curves revealed that the dynamic vulcanization process employed was successful and incorporation of filler has no adverse effect on the processibility of the composites. Incorporation of WRHA improves the tensile modulus and flexural modulus and lowers tensile strength, elongation at break, tear strength, and toughness of both types of composites. Dynamic vulcanization significantly enhances the mechanical and TPE properties of the composites. Dynamic mechanical analysis (DMA) study revealed the existence of two phases in both types of composites. It further shows that neither dynamic vulcanization nor filler agglomeration has played a prominent role in the compatibility of the composites. Thermogravimetric investigation shows that dynamic vulcanization or WRHA loading has not adversely affected the thermal stability of the composites. The scanning electron micrographs provide evidence for the tendency to form filler agglomerates with increasing filler loading, better filler dispersion of dynamically vulcanized composites over unvulcanized composites, and effective vulcanization of elastomer phase of the composites in the presence of filler. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 85: 438–453, 2002  相似文献   

2.
The effect of Borax on the mechanical and ablation properties of three different ethylene‐propylene‐diene terpolymer (EPDM) compounds containing 20 phr carbon fiber, 20 phr Kevlar or 10 phr/ 10 phr carbon fiber/ Kevlar was investigated. All formulations contained 30 phr fumed silica powder and 10 phr paraffinic oil. It was found that adding Borax to the composite samples containing carbon fiber or Kevlar fiber or their mixture with an equal ratio can increase the tensile strength, elastic modulus and hardness with a slightly decrease in the elongation at break of the rubber samples. The results of thermogravimetry analysis (TGA) on the various samples showed significant increase in the char yield at 670°C by adding Borax to the rubber compounds. Moreover, ablation resistance of samples was also improved by increasing Borax content. Meanwhile, density and thermal conductivity of the insulator were also reduced up to about 10% when the carbon fiber was replaced with the Borax. The results indicated that composites containing Kevlar have high storage modulus and produce compact and stable char. EPDM rubber composite containing Borax (20 phr), carbon fiber (10 phr), and Kevlar (10 phr) showed thermal and ablative properties comparable with those of the asbestos‐ filled EPDM. The thermal conductivity and ablation rate of the above‐ mentioned sample were 0.287 W/m/K and 0.13 mm/s respectively. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41936.  相似文献   

3.
The effects of reprocessing by extrusion for up to five cycles, at both the usual (200°C) and an extreme (230°C) temperature, on the structure and mechanical properties of a poly(amino ether) (PAE) resin were studied. A slight darkening and viscosity increase was observed, mainly upon reprocessing at 230°C. The melt flow index and solubility analysis indicated that grafting and crosslinking reactions took place, respectively, after reprocessing at 200 and 230°C. The Young′s modulus and the yield stress of PAE increased slightly with successive extrusion cycles. This was attributed to the viscosity‐induced increase in orientation, and to a minor extent to the partially grafted/crosslinked nature of the samples. The decrease in the ductility was more noticeable in the samples reprocessed at 230°C, and was attributed to the reduced ability to elongate of partially grafted and partially crosslinked structures present after reprocessing, respectively, at 200 and 230°C. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 101: 1368–1373, 2006  相似文献   

4.
An ethylene–propylene–diene terpolymer (EPDM) was photocrosslinked under UV irradiation with benzil dimethyl ketal (BDK) as a photoinitiator and trimethylolpropane triacrylate (TMPTA) as a crosslinker. The efficiency of the photoinitiated crosslinking system EPDM–BDK–TMPTA, various factors affecting the crosslinking process (the photoinitiator and crosslinker and their concentrations, the irradiation time, the temperature, the atmosphere and UV‐light intensity, and the depth of the UV‐light penetration), and the mechanical properties of photocrosslinked EPDM were examined extensively through the determination of the gel contents, infrared spectra, and mechanical measurements. EPDM samples 3 mm thick were easily crosslinked with a gel content of about 90% after 30 s of UV irradiation under optimum conditions. The photoinitiating system of a suitable initiator combined with a multifunctional crosslinker such as BDK–TMPTA enhanced the efficiency of the photocrosslinking reaction, especially by increasing the initial rate of crosslinking. The gel content of photocrosslinked EPDM, which was determined by the content of diene in EPDM, the depth of the UV‐light penetration, and the light intensity, played a key role in increasing the mechanical properties of the photocrosslinked samples in this work. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 93: 1837–1845, 2004  相似文献   

5.
The production of high quantities of end‐of‐life rubbers is an environmental problem of growing importance. Because of their crosslinked nature, such rubbers cannot be easily reprocessed, and actually, they are mainly wasted or reused after a simple mechanical grinding. In this study, a microwave (MW)‐induced thermal treatment at temperatures above 300°C was proposed to obtain partial devulcanization of a poly(ethylene–propylene–diene) (EPDM) rubber filled with carbon black. The use of MWs showed to be a very fast and simple technique, which allowed the production of a treated rubber with a relatively low degree of crosslinking, a slight revulcanization ability, and suitability for reuse in conjunction with virgin rubber. Preliminary mechanical characterization, performed on the revulcanized samples, indicated that the virgin and treated rubber were able to establish a good interface adhesion, which led to performances better than those of similar materials where the recycled part was made of ground untreated EPDM. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

6.
Ethylene–propylene–diene rubber (EPDM)/montmorillonite (MMT) composites were prepared through a melt process, and three kinds of surfactants with different ammonium cations were used to modify MMT and affect the morphology of the composites. The morphology of the composites depended on the alkyl ammonium salt length, that is, the hydrophobicity of the organic surfactants. Organophilic montmorillonite (OMMT), modified by octadecyltrimethyl ammonium salt and distearyldimethyl ammonium salt, was intercalated and partially exfoliated in the EPDM matrix, whereas OMMT modified by hexadecyltrimethyl ammonium chloride exhibited a morphology in which OMMT existed as a common filler. Ethylene–propylene–diene rubber grafted with maleic anhydride (MAH‐g‐EPDM) was used as a compatibilizer and greatly affected the dispersion of OMMT. When OMMTs were modified by octadecyltrimethyl ammonium chloride and distearydimethyl ammonium chloride, the EPDM/OMMT/MAH‐g‐EPDM composites (100/15/5) had an exfoliated structure, and they showed good mechanical properties and high dynamic moduli. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 92: 638–646, 2004  相似文献   

7.
The deformation and fracture behavior of several dynamic vulcanizate blends of isotactic polypropylene with ethylene‐propylene‐diene rubber (EPDM) was examined and compared with those of uncrosslinked blends of PP/EPDM. These blends were prepared by melt mixing in an internal mixer at 190°C in a composition range of 10–40 wt % EPDM rubber. The variation in yield stress, the strength of fibrils of the craze, and the number density of the EPDM rubber domains (morphology fixation) that are dominant factors for enhancing interfacial adhesion and toughness in dynamic vulcanizate blends were evaluated. The ductility and toughness of these materials were explained in light of the composition between crack formation and the degree of plastic deformation through crazing and shear yielding. The physicomechanical properties including the hardness, yield stress, Young's modulus, percentage elongation, impact strength, flexural strength, and flexural modulus of dynamic vulcanized blends were found to be consistent and displayed higher values compared with uncrosslinked blends. The nucleation effect of the crosslinked particles and the decrease of crystallinity of the EPDM rubber were also considered to contribute to the improvement in the impact strength. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 78: 2089–2103, 2000  相似文献   

8.
The effects of the incorporation of single‐walled carbon nanotubes (SWNTs) on the physical and mechanical properties of thermoplastic elastomers based on blends of isotactic polypropylene (iPP) and ethylene–propylene–diene rubber (EPDM) are described. A marked decrease of the half‐time of PP–EPDM crystallization and a sensible increase of the overall crystallization rate were observed in the presence of SWNTs. These results confirmed the expected nucleant effect of nanotubes on the crystallization of polypropylene. This effect was not linearly dependent on the SWNTs' content, showing a saturation of the nucleant effect at high nanotube concentrations. Dynamic mechanical analysis results showed a significant and controversial change of the mechanical behavior of the PP–EPDM/SWNT composites depending on the nanotube content. In particular, the storage modulus increased at the lowest incorporation of SWNTs, whereas a further increase of nanotubes led to a reduction of the storage modulus with respect to the pristine polymer matrix. Raman spectroscopy and scanning electron microscopy were successfully applied to demonstrate that in the composite films, the changes in the crystallization kinetics and mechanical properties could be explained in terms of the changes of the distance between nanotubes in bundles after a different intercalation of the polymer matrix. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 89: 2657–2663, 2003  相似文献   

9.
Considering the properties of silicon rubber, ethylene–propylene–diene monomer (EPDM), and cis‐polybutadiene rubber (BR), a blend made by a new method was proposed in this article; this blend had thermal resistance and good mechanical properties. The morphology of the blend was studied by SEM, and it was found that the adhesion between the phases of BR, EPDM, and polysiloxanes (silicon rubber) could be enhanced, and the compatibility and covulcanization were good. The influence of the mass ratio of peroxide and silica on the mechanical properties and thermal resistance of the blend was studied. The results showed that the mechanical properties and thermal resistance of the blend were improved when silicon rubber/BR/EPDM was 20/30/50, dicumyl peroxide/sulfur was 2.5/2.5, and the amount of silica was 80 phr. The integral properties of rubber blend had more advantages than did the three rubbers. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 101: 4462–4467, 2006  相似文献   

10.
Study of melts rheological properties of unvulcanized and dynamically vulcanized polypropylene (PP)/ethylene‐propylene‐diene rubber (EPDM) blends, at blending ratios 10–40 wt %, EPDM, are reported. Blends were prepared by melt mixing in an internal mixer at 190°C and rheological parameters have been evaluated at 220°C by single screw capillary rheometer. Vulcanization was performed with dimethylol phenolic resin. The effects of (i) blend composition; (ii) shear rate or shear stress on melt viscosity; (iii) shear sensitivity and flow characteristics at processing shear; (iv) melt elasticity of the extrudate; and (v) dynamic cross‐linking effect on the processing characteristics of the blends were studied. The melt viscosity increases with increasing EPDM concentration and decreased with increasing intensity of the shear mixing for all compositions. In comparison to the unvulcanized blends, dynamically vulcanized blends display highly pseudoplastic behavior provides unique processing characteristics that enable to perform well in both injection molding and extusion. The high viscosity at low shear rate provides the integrity of the extrudate during extrusion, and the low viscosity at high shear rate enables low injection pressure and less injection time. The low die‐swell characteristics of vulcanizate blends also give high precision for dimensional control during extrusion. The property differences for vulcanizate blends have also been explained in the light of differences in the morphology developed. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 77: 1488–1505, 2000  相似文献   

11.
A novel composite was prepared by the addition of a dough‐modeling compound (DMC) reinforcement and an ethylene–propylene–diene terpolymer (EPDM)/acrylic rubber (ACM) matrix. We studied the DMC/EPDM/ACM mass ratio and vulcanizing process by testing the tensile strength, Shore A hardness, elongation at break, and wear and thermal properties. The results show that the mechanical properties, thermal properties, and wear resistance of the composites were good when the DMC/EPDM/ACM mass ratio was 70/25/75 and the cure conditions were 180°C under 10 MPa for 25 min. The crosslinking structure of the composites was studied by IR, and this further proved the interaction between DMC, ACM, and EPDM. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

12.
The effects of three curing systems and polysulfonamide (PSA) pulp on the curing characteristics, mechanical properties, and swelling behavior of ethylene–propylene–diene elastomer (EPDM) composites were investigated. The maximum torque value and the optimum curing time were highest for EPDM composites cured with a peroxide system, and they were closely followed by those cured with a sulfur system. In comparison with those cured with peroxide and phenolic resin systems, EPDM composites cured with the sulfur system showed higher mechanical properties and dimensional stability. With increasing PSA pulp content, the maximum torque value of the EPDM composites increased, whereas the optimum curing time of the composites decreased. The orientation percentage of the PSA pulp in the EPDM composites was maximum at 30 phr pulp, as determined from green strength measurements. In the longitudinal direction along which the pulp was oriented, the EPDM composites showed higher tensile strength as well as lower elongation and swelling ratios. Also, with increasing PSA pulp content, the tensile strength of the EPDM composites decreased up to 10 phr pulp and subsequently increased, whereas the elongation and swelling ratio of the EPDM composites decreased linearly. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

13.
Ethylene–propylene–diene monomer/polytetrafluorethylene (EPDM/PTFE) composites based on EPDM and electron beam irradiated PTFE powders (MS‐II, MS‐III, and MS‐V, with mean diameter 5 μm, 1 μm, and 0.1 μm, respectively) were prepared by a mechanical compounding technique. The curing characteristics, morphologies, mechanical properties, and abrasion behaviors of these composites were investigated. The curing measurements indicated that the addition of lower loading of MS‐III or MS‐V enhanced the lubrication of EPDM compounds and delayed the curing process. The morphological structure of the composites demonstrated that the MS‐III and MS‐V were uniformly dispersed in EPDM matrix and the efficient polymer–filler interfacial interactions were constructed. In comparison with EPDM/MS‐II and EPDM/MS‐III, EPDM/MS‐V exhibited outstanding tensile strength, tear strength, elongation at break, and abrasion resistance due to the nanometer particle dimension and good dispersion of MS‐V as well as the stronger interfacial interactions between MS‐V and the EPDM matrix. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

14.
This study was performed with commercially available phenyl trimethoxysilane (PTMS) and neoalkoxytitanate [i.e., neopentyl(diallyl)oxytri(dioctyl)phosphato titanate (LICA 12)] as coupling agents. PTMS and LICA 12 were used to treat talc and kaolin to compare their effects with untreated fillers upon incorporation into polypropylene (PP). Single‐filler PP composites (containing either talc or kaolin) and hybrid‐filler composites (containing a mix of both talc and kaolin) were compounded in a twin‐screw extruder and subsequently injection‐molded into dumbbells. The incorporation of PTMS and LICA 12 slightly decreased the tensile and flexural properties in terms of modulus and strength but increased the elongation at break for both single‐filler and hybrid‐filler composites. There was also a significant improvement in the impact strength of the composites, particularly those treated with LICA 12. The hybrid composites, through the synergistic coalescence of positive characteristics from talc and kaolin with the aid from chemical treatment provided an economically advantageous material with mechanical properties comparable to those of the single‐filler‐filled PP composites. Further investigations on flow and morphological properties were also done to correlate the mechanical properties of the single‐ and hybrid‐filler‐filled PP composites. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

15.
In this study, ethylene–propylene–diene monomer (EPDM)/fibrillar silicate (FS) nanocomposites were successfully prepared by mechanically blending EPDM with FS, which was modified by silane coupling agent KH570 containing methacryloxy group. The effects of silane content and modified FS on the dispersion of FS and mechanical properties of the composites were investigated. The impact of water in FS on mechanical properties of the composites was also evaluated. The results showed that modified FS could be dissociated into nanofibers dispersing evenly in the EPDM matrix by increasing substantially the loading of silane through the mechanical blending. The optimum loading level of silane coupling agent was up to 24 phr/100 phr FS. Silane KH570 could improve the dispersion of FS and strengthen nanofibers–rubber interfacial adhesion even at the loading of as high as 50 phr FS, making FS to exhibit excellent reinforcement to EPDM. Too much FS could not be completely dissociated into nanofibers, slowing down further improvement. The EPDM/FS composites exhibited the similar stress–strain behavior and obvious mechanical anisotropy with short microfiber‐reinforced rubber composites. With the increase in silane coupling agent and modified FS, the number of nanofibers increased because of the exfoliation of FS microparticles; thus, the mechanical behaviors would become more obvious. It was suggested that the free water in FS should be removed before mechanically blending EPDM with FS because it obviously affected the tensile properties of the composites. Regardless of whether FS was dried or modified, the EPDM/FS composites changed little in tensile strength after soaked in hot water. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

16.
The purpose of this work was to study how mineral fillers would behave in a polypropylene (PP) matrix when PP modified with maleic anhydride (MA) and/or itaconic acid (IA) was used as a coupling agent in the preparation of mineral‐filled PP composites. The composites were characterized with tensile mechanical measurements and morphological analysis. The optimum amount of the coupling agent to be used to obtain composites with improved mechanical properties was established. The results indicated that these coupling agents enhanced the tensile strength of the composites significantly, and the extent of the coupling effect depended on the nature of the interface that formed. The incorporation of coupling agents enhanced the resistance to deformation of the composite. The behavior of IA‐modified PP as a coupling agent was similar to that of a commercial MA‐modified PP for the filled PP composites. Evidence of improved interfacial bonding was revealed by scanning electron microscopy studies, which examined the surfaces of fractured tensile test specimens; their microstructures confirmed the mechanical results with respect to the observed homogeneous or optimized dispersion of the mineral‐filler phase in these composites. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 103: 2343–2350, 2007  相似文献   

17.
Tensile yield behavior of the blends of polypropylene (PP) with ethylene‐propylene‐diene rubber (EPDM) is studied in blend composition range 0–40 wt % EPDM rubber. These blends were prepared in a laboratory internal mixer by simultaneous blending and dynamic vulcanization. Vulcanization was performed with dimethylol phenolic resin. For comparison, unvulcanized PP/EPDM blends were also prepared. In comparison to the unvulcanized blends, dynamically vulcanized blends showed higher yield stress and modulus. The increase of interfacial adhesion caused by production of three‐dimensional network is considered to be the most important factor in the improvement. It permits the interaction of the stress concentrate zone developed at the rubber particles and causes shear yielding of the PP matrix. Systematic changes with varying blend composition were found in stress‐strain behavior in the yield region, viz., in yield stress, yield strain, width of yield peak, and work of yield. Analysis of yield stress data on the basis of the various expressions of first power and two‐thirds power laws of blend compositions dependence and the porosity model led to consistent results from all expression about the variation of stress concentration effect in both unvulcanized and vulcanized blend systems. Shapes and sizes of dispersed rubber phase (EPDM) domains at various blend compositions were studied by scanning electron microscopy. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 78: 2104–2121, 2000  相似文献   

18.
Reinforced rubbers are complex compared to unfilled systems. There are differences in the mechanisms affecting network molecular structure as well as properties of the rubber materials. In this article investigation of crosslink network and untied network defects on a molecular level of unfilled and carbon black filled ethylene‐propylene‐diene terpolymer was carried out using proton solid‐state double‐quantum NMR spectroscopy. The results show that the filled system demonstrates lower cure efficiency in conjunction with more noncoupled network defects than the unfilled one. In addition, the filled system yields the greater spatial heterogeneity because of the localization of the free radicals at the rubber–filler boundary. These strongly influence the mechanical properties of the filled rubber. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 44224.  相似文献   

19.
The effects of the incorporation of different types of carbon black as fillers on some selected physical and mechanical properties of ethylene–propylene–diene rubber (EPDM) based compounds were studied with the results of density, ultrasonic wave velocity, and tensile measurements. Ultrasonic wave velocities (both longitudinal and shear) were measured at frequencies up to 4 MHz at room temperature. The density, ultrasonic attenuation coefficient, and tensile strength results showed that rubber mixes containing general‐purpose furnace (GPF) black at a concentration of 25 phr had the best physical and mechanical properties. These results were interpreted to be due to the better compatibility of GPF black, which, because of its particle size and structure, filled the interstitial spaces in EPDM and provided better reinforcement of the elastomer. The use of a nondestructive technique such as ultrasonic measurement presents a new possibility for testing rubber and plastic products more efficiently. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

20.
Polypropylene (PP) composites filled with wood flour (WF) were prepared with a twin‐screw extruder and an injection‐molding machine. Three types of ecologically friendly flame retardants (FRs) based on ammonium polyphosphate were used to improve the FR properties of the composites. The flame retardancy of the PP/WF composites was characterized with thermogravimetric analysis (TGA), vertical burn testing (UL94‐V), and limiting oxygen index (LOI) measurements. The TGA data showed that all three types of FRs could enhance the thermal stability of the PP/WF/FR systems at high temperatures and effectively increase the char residue formation. The FRs could effectively reduce the flammability of the PP/WF/FR composites by achieving V‐0 UL94‐V classification. The increased LOI also showed that the flammability of the PP/WF/FR composites was reduced with the addition of FRs. The mechanical property study revealed that, with the incorporation of FRs, the tensile strength and flexural strength were decreased, but the tensile and flexural moduli were increased in all cases. The presence of maleic anhydride grafted polypropylene (MAPP) resulted in an improvement of the filler–matrix bonding between the WF/intumescent FR and PP, and this consequently enhanced the overall mechanical properties of the composites. Morphological studies carried out with scanning electron microscopy revealed clear evidence that the adhesion at the interfacial region was enhanced with the addition of MAPP to the PP/WF/FR composites. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号