首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 843 毫秒
1.
Bacteria often reside at surfaces as complex biofilms in which an exopolysaccharide matrix entraps the population while allowing access to its chemical environment. There is a growing awareness that the biofilm structure and activity are integral to a wide array of properties important to health (the microbiome), disease (drug resistance) and technology (fouling). Despite the importance of bacterial biofilms, few experimental platforms and systems are available to assemble complex populations and monitor their activities. Here, a functionalized alginate composite material for creating in vitro model biofilms suitable for cell‐cell signaling studies by entrapping bacterial cells in situ is reported. Biofilm assembly is achieved using device‐imposed electrical signals to electrodeposit the stimuli‐responsive polysaccharide alginate. This electrodeposition mechanism is versatile in that it allows control of the bacterial population density and distribution. For instance, it is demonstrated that a mixed population can be homogeneously distributed throughout the biofilm or can be assembled as spatially segregated populations within a stratified biofilm. The “electroaddressable” biofilms are visualized using both a planar 2D chip with patterned electrodes and a microfluidic bioMEMS device with sidewall electrodes. Specifically, it is observed that bacteria entrapped within the model biofilm recognize and respond to chemical stimuli imposed from the fluidic environment. Finally, reporter cells are used to demonstrate that bacteria entrapped within this model biofilm engage in intercellular quorum sensing. This work demonstrates the functionality of the stimuli‐responsive polysaccharide by biofabricating pseudo‐3D cell‐gel biocomposites, mimicking the formation of biofilms, for interrogating phenotypes of E. coli bacterial populations. In addition to controlling assembly, the microfluidic device allows the biofilm to be monitored through the fluorescence methods commonly used in biological research. This platform technology should be able to be exploited for monitoring biofilm development, as well as for extending the understanding of the interactions between various bacterial species arranged in controlled patterns.  相似文献   

2.
The construction of biomimetic microenvironments with specific chemical and physical cues for the organization and modulation of a variety of cell populations is of key importance in tissue engineering. We show that a range of human cell types, including promyoblasts, chondrocytes, adipocytes, adenovirally transduced osteoprogenitors, immunoselected mesenchymal stem cells, and the osteogenic factor, rhBMP‐2 (BMP: bone morphogenic protein), can be successfully encapsulated within mineralized polysaccharide capsules without loss of function in vivo. By controlling the extent of mineralization within the alginate/chitosan shell membrane, degradation of the shell wall and release of cells or rhBMP‐2 into the surrounding medium can be regulated. In addition, we describe for the first time the ability to generate bead‐in‐bead capsules consisting of spatially separated cell populations and temporally separated biomolecule release, entrapped within alginate/chitosan shells of variable thickness, mineralization, and stability. Such materials offer significant potential as multifunctional scaffolds and delivery vehicles in tissue regeneration of hard and soft tissues.  相似文献   

3.
The triggered assembly of organic and biological materials in response to imposed electrical signals (i.e., electroaddressing) provides interesting opportunities for applications in molecular electronics, biosensing and nanobiotechnology. Recent studies have shown that the conjugation of aromatic moieties to short peptides often yields hydrogelator compounds that can be triggered to self‐assemble over a hierarchy of length scales in response to a reduction in pH. Here, we examined the capabilities of fluorenyl‐9‐methoxycarbonyl‐phenylalanine (Fmoc‐Phe) to electrodeposit in response to an electrochemically‐induced pH gradient generated at the anode surface. We report that the electrodeposition of Fmoc‐Phe; is rapid (minutes), can be spatially controlled in normal and lateral directions, and can be reversed by applying a brief cathodic current. Further more, we show that Fmoc‐Phe can be simultaneously deposited on one electrode address (anode) while it is being cathodically stripped from a separate electrode address of the same chip. Finally, we demonstrate that these capabilities can be extended for electroaddressing within microfluidic channels. The reversible assembly/disassembly of molecular gelators (Fmoc‐amino acids and Fmoc‐peptides) in response to spatiotemporally imposed electrical signals offers unique opportunities for electroaddressing that should be especially valuable for lab‐on‐a‐chip applications.  相似文献   

4.
Advances in thin‐film fabrication are integral to enhancing the power of microelectronics while fabrication methods that allow the integration of biological molecules are enabling advances in bioelectronics. A thin‐film‐fabrication method that further extends the integration of biology with microelectronics by allowing living biological systems to be assembled, cultured, and analyzed on‐chip with the aid of localized electrical signals is described. Specifically, the blending of two stimuli‐responsive film‐forming polysaccharides for electroaddressing is reported. The first, alginate, can electrodeposit by undergoing a localized sol–gel transition in response to electrode‐imposed anodic signals. The second, agarose, can be co‐deposited with alginate and forms a gel upon a temperature reduction. Electrodeposition of this dual polysaccharide network is observed to be a simple, rapid, and spatially selective means for assembly. The bioprocessing capabilities are examined by co‐depositing a yeast clone engineered to display a variable lymphocyte receptor protein on the cell surface. Results demonstrate the in‐film expansion and induction of this cell population. Analysis of the cells' surface proteins is achieved by the electrophoretic delivery of immunoreagents into the film. These results demonstrate a simple and benign means to electroaddress hydrogel films for in‐film bioprocessing and immunoanalysis.  相似文献   

5.
The cover shows biomineralized polysaccharide capsules with specifiable make‐up, which can provide microenvironments for stabilization, growth, and differentiation of human cell types, as reported by Oreffo and co‐workers on p. 917. The capsules are amenable to complexation with a range of bioactive molecules and cells, offering tremendous potential as multifunctional scaffolds and delivery vehicles in tissue regeneration of hard and soft tissues. The construction of biomimetic microenvironments with specific chemical and physical cues for the organization and modulation of a variety of cell populations is of key importance in tissue engineering. We show that a range of human cell types, including promyoblasts, chondrocytes, adipocytes, adenovirally transduced osteoprogenitors, immunoselected mesenchymal stem cells, and the osteogenic factor, rhBMP‐2 (BMP: bone morphogenic protein), can be successfully encapsulated within mineralized polysaccharide capsules without loss of function in vivo. By controlling the extent of mineralization within the alginate/chitosan shell membrane, degradation of the shell wall and release of cells or rhBMP‐2 into the surrounding medium can be regulated. In addition, we describe for the first time the ability to generate bead‐in‐bead capsules consisting of spatially separated cell populations and temporally separated biomolecule release, entrapped within alginate/chitosan shells of variable thickness, mineralization, and stability. Such materials offer significant potential as multifunctional scaffolds and delivery vehicles in tissue regeneration of hard and soft tissues.  相似文献   

6.
The design of smart hydrogel actuators fully constructed from natural polymers for assessing the biomedical applications is important but challenging. Herein, an extremely simple, green, and ultrafast strategy is presented for preparing robust gradient all‐polysaccharide polyelectrolyte complex hydrogel actuators. Driven by diffusing of low molecular weight chitosan into high molecular weight sodium alginate solution, a nanoporous, ultrastrong, and gradient chitosan/sodium alginate complex hydrogel film with adjustable thickness can be directly generated on the interface of two solutions within minutes. The as‐prepared film can provide superfast temperature, ionic strength, and pH‐triggered programmable deformations, and perform a distinct sequential double folding behavior due to the competitive effect between complexed and noncomplexed segments of polyelectrolyte. Besides, patterning Ca2+ to locally crosslink sodium alginate in the film enables various more complex shape transformations. This green and simple diffusion‐driven strategy provides significant guidance for fabricating bio‐friendly actuators with applications in drug delivery, tissue engineering, soft robotics, and active implants.  相似文献   

7.
Ions are essential to body, but sometimes can evolve into weapons to attack and destroy cells without systematic toxicity and drug resistance. Inspired by nitric oxygen as neurotransmitter in mediating Ca2+ release, NO nanodonors with high photoreactivity and stability are constructed with upconversion nanoparticles (UCNPs) coated by zeolitic nitro-/nitrile-imidazole framework-82 (ZIF-82), capable of near-infrared light (NIR) triggered NO generation and berbamine (BER) release, to achieve cancer therapy with the stored Ca2+ in cells. The spatial confinement effect of 2-nitroimidazole in ZIF-82 enables NO-releasing with tunable release kinetics. NO turns on the ryanodine receptors overexpressed in cancer cells for abrupt Ca2+ elevation; meanwhile, berbamine (BER) turns Ca2+-excretion pumps off to inhibit calcium efflux, resulting in intracellular Ca2+ overload induced apoptosis. This work provides the first example of regulating endogenous ions for cell killing, which holds promise as an effective cancer therapeutics that is complementary to traditional chemotherapeutics.  相似文献   

8.
This study presents a novel, green, and efficient way of preparing crosslinked aerogels from cellulose nanofibers (CNFs) and alginate using non‐covalent chemistry. This new process can ultimately facilitate the fast, continuous, and large‐scale production of porous, light‐weight materials as it does not require freeze‐drying, supercritical CO2 drying, or any environmentally harmful crosslinking chemistries. The reported preparation procedure relies solely on the successive freezing, solvent‐exchange, and ambient drying of composite CNF‐alginate gels. The presented findings suggest that a highly‐porous structure can be preserved throughout the process by simply controlling the ionic strength of the gel. Aerogels with tunable densities (23–38 kg m?3) and compressive moduli (97–275 kPa) can be prepared by using different CNF concentrations. These low‐density networks have a unique combination of formability (using molding or 3D‐printing) and wet‐stability (when ion exchanged to calcium ions). To demonstrate their use in advanced wet applications, the printed aerogels are functionalized with very high loadings of conducting poly(3,4‐ethylenedioxythiophene):tosylate (PEDOT:TOS) polymer by using a novel in situ polymerization approach. In‐depth material characterization reveals that these aerogels have the potential to be used in not only energy storage applications (specific capacitance of 78 F g?1), but also as mechanical‐strain and humidity sensors.  相似文献   

9.
This paper presents an innovative low‐cost electrodeposition process to grow metallic zinc grids as a front contact for Cu(In,Ga)(Se,S)2 (CIGS) and silicon heterojunction solar cells as an alternative to complex and expensive monolithic integration and silver screen printing techniques respectively. Morphological and electrical properties of the grid have been investigated and compared with a reference evaporated one. High quality and conformal zinc grids have been deposited showing very high growth rates up to 3.3 µm min−1. Zinc grid is successfully deposited as front electrode for CIGS solar cells that are fabricated by a variety of deposition processes. Efficiency (16.3%) is achieved without antireflection coating on a 0.5 cm2 co‐evaporated absorber and 14.8% on an electrodeposited one. Using electrodeposition for the growth of the doped ZnO film as well, a 14.1% efficiency is demonstrated on an all‐wet solar cell only composed of layers deposited by atmospheric methods—from absorber to metallic grid. The process is then applied to a 4.2 cm2 cell as a first step toward large‐scale application. Finally, a zinc grid is deposited on a 0.5 cm2 silicon heterojunction showing a promising 17% efficiency. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

10.
New hybrid colloidal gels are reported formed by amyloid fibrils and CaCO3 nanoparticles (CaNPs), with Ca2+ as charge screening ions and CaNPs as physical crosslinking agents to establish and stabilize the network. The gel is characterized by rheological measurements and diffusing wave spectroscopy, complemented by microscopic observations using transmission and scanning electron microscopy. The hybrid colloidal gels show a two orders of magnitude improved gel strength at significantly shorter gelation times compared to previous calcium ion‐induced amyloid fibril gels. Supercritical CO2‐dried colloidal aerogels allow demonstrating that amyloid fibrils, combined with smaller (higher specific surface area) CaNPs, constitute a denser fibrils network, resulting in stronger gels. By varying the amyloid fibril concentration and the CaNPs size and concentration, the complete phase diagram is mapped out. This enables identifying the sol–gel phase transition and a window for gel formation, which widens with increasing CaNPs size. Finally pH responsiveness and self‐healing properties of this hybrid colloidal gel are also demonstrated, making these systems a suitable candidate for biological applications.  相似文献   

11.
This work presents a new type of feed‐back active coating with inhibitor‐containing reservoirs for corrosion protection of metallic substrates. The reservoirs are composed of stratified layers of oppositely charged polyelectrolytes deposited on AA2024 aluminum alloy coated with hybrid sol‐gel film. The layer‐by‐layer assembled polyelectrolyte film with the entrapped corrosion inhibitor is constructed by sequential spray‐coating deposition of water solutions of poly(ethyleneimine), poly(sodium styrenesulfonate) and 8‐hydroxyquiniline on the top of the sol‐gel coating. The active corrosion protection of AA2024 alloy coated with SiO2/ZrO2 sol‐gel film and modified by polyelectrolytes is demonstrated by electrochemical impedance spectroscopy and scanning vibrating electrode technique. The results obtained here show that polyelectrolyte films deposited atop of the hybrid sol‐gel coating on AA2024 alloy remarkably improve the long‐term protection performance providing additional “intelligent” anticorrosion effect that results from delivery of inhibiting species “on demand”. This becomes possible since the configuration of the polyelectrolyte molecules depends on the presence of H+ ions making the polyelectrolyte film sensitive to the pH of the surrounding solution. The source of local pH changes is the corrosion process starting in the micro‐ and nano‐defects leading to increased permeability of the polyelectrolyte reservoir and, consequently, to controllable release of entrapped inhibitor.  相似文献   

12.
A highly ordered 2D‐hexagonal mesoporous silica material is functionalized with 3‐aminopropyltriethoxysilane. This organically modified mesoporous material is grafted with a dialdehyde fluorescent chromophore, 4‐methyl‐2,6‐diformyl phenol. Powder X‐ray diffraction, transmission electron microscopy, N2 sorption, Fourier transform infrared spectroscopy, and UV‐visible absorption and emission have been employed to characterize the material. This material shows excellent selective Zn2+ sensing, which is due to the fluorophore moiety present at its surface. Fluorescence measurements reveal that the emission intensity of the Zn2+‐bound mesoporous material increases significantly upon addition of various concentrations of Zn2+, while the introduction of other biologically relevant (Ca2+, Mg2+, Na+, and K+) and environmentally hazardous transition‐metal ions results in either unchanged or weakened intensity. The enhancement of fluorescence is attributed to the strong covalent binding of Zn2+, evident from the large binding constant value (0.87 × 104 M ?1). Thus, this functionalized mesoporous material grafted with the fluorescent chromophore could monitor or recognize Zn2+ from a mixture of ions that contains Zn2+ even in trace amounts and can be considered as a selective fluorescent probe. We have examined the application of this mesoporous zinc(II) sensor to cultured living cells (A375 human melanoma and human cervical cancer cell, HeLa) by fluorescence microscopy.  相似文献   

13.
An optical calcium sensor is fabricated based on a cholesteric liquid crystalline (CLC) polymer containing benzoic acid metal binding sites. A chiral imprinted CLC polymer is made which is subsequently treated with KOH to yield a responsive green reflecting film. On investigation of various metal ions, the polymer film shows a high optical response, and selectivity for calcium ions, which is related to the preorganized binding sites in the ordered liquid crystalline phase, leading to a blue reflecting film. The photonic polymer film is sensitive to Ca2+ within the physiologically relevant concentration range of 10?4 to 10?2 m . Measurement of total calcium concentration in serum is also investigated using the film. The optical responses of normal serum and samples mimicking hypocalcemia and hypercalcemia can be clearly distinguished, providing a cheap, battery‐free, and easy‐to‐use alternative for calcium determination in clinical diagnostics.  相似文献   

14.
A growing body of evidence suggests that studying cell biology in classical two‐dimensional formats, such as cell culture plasticware, results in misleading, non‐physiological findings. This paper describes the optimization of a microsphere‐based system permitting 3D cell culture incorporating physiological extracellular matrix components. Bio‐electrospraying, the most advanced method currently available, is used to produce microspheres containing THP‐1 cells as a model cell line. The bio‐electrospraying para­meters of nozzle size, polymer flow rate, and voltage are systematically investigated in order to allow stable production of size‐controlled microspheres containing extracellular matrix material and human cells. The effect of bio‐electrospraying parameters, alginate type and cell concentration on cell viability are investigated using trypan blue and propidium iodide staining. Bio‐electrospraying has no effect on cell viability nor the ability of cells to proliferate. Cell viability is similarly minimally affected by encapsulation in all types of alginate tested (MVM, MVG, chemical and food‐grade). Cell density of 5 × 106 cells mL?1 within microspheres is the optimum for cell survival and proliferation. The stable generation of microspheres incorporating cells and extracellular matrix for use in a 3D cell culture will benefit study of many diverse diseases and permit investigation of cellular biology within a 3D matrix.  相似文献   

15.
A novel intelligent “active defense” system that can specially respond to cancerous tissues for drug release was designed and prepared. The “active defense” system consists of a biodegradable dextran microgel core cross‐linked by a Schiff's base and a surrounding layer formed by Layer‐by‐Layer (LbL) assembly. The loading and release of macromolecular model drug, dex‐FITC, as well as antineoplastic drug, DOX, was investigated. The in vitro cell inhibition and drug release behavior of the drug delivery system were studied and the results showed that the entrapped drug could be explosively released from the microcapsules and thereafter taken up by cancer cells upon the trigger of the acidic environment around tumor tissues.  相似文献   

16.
Natriuretic peptide receptor A (NPRA), the receptor for the cardiac hormone atrial natriuretic peptide (ANP), is expressed abundantly on cancer cells and disruption of ANP‐NPRA signaling inhibits tumor burden and metastasis. Since antagonists of NPRA signaling have not provided reproducible results, we reason that a synthetic neutralizing antibody to ANP, which has high selectivity and affinity for ANP, can be used to regulate ANP levels and attenuate NPRA signaling. In this study, we prepare molecularly imprinted polymeric nanoparticles (MIPNPs) for ANP using a short peptide of ANP as the template and determine their binding affinity and selectivity. The MIPNPs are prepared by precipitation polymerization using NH2–SLRRSS–CONH2, which is a short peptide from ANP, as a template, methacrylic acid and N‐isopropylacrylamide as functional monomers, and bis‐acrylamide as a crosslinker. The average diameters of the MIPNPs and of non‐imprinted nanoparticles (NIPNPs) in water are 215.8 ± 4.6 nm and 197.7 ± 3.1 nm respectively. The binding‐isotherm analysis shows that the MIPNPs have a much‐higher binding affinity for the template peptide and ANP than the NIPNPs. Scatchard analysis gives an equilibrium dissociation constant, Kd, of 7.3 × 10?6 M with a binding capacity of 106.7 μmol g?1 for the template peptide and a Kd of 7.9 × 10?6 M with a binding capacity of 36.0 μmol g?1 for the ANP. Measurements of the binding kinetics reveal that MIPNPs reach protein‐adsorption equilibrium in 30 min. The MIPNPs are found to have a high specificity for ANP with little affinity for BSA or scrambled ANP peptide. The MIPNPs also recognize and adsorb ANP in cell‐culture medium spiked with ANP and in human plasma. Taken together, these results indicate that the MIPNPs have a high affinity and selectivity for ANP and can be used as a synthetic antibody for modulating ANP‐NPRA signaling in cancers.  相似文献   

17.
2D molybdenum disulfide (MoS2) is herein explored as an advanced surface material in the fabrication of powerful tubular microengines. The new catalytic self‐propelled open‐tube bilayer microengines have been fabricated using a template electrodeposition and couple the unique properties of sp2 hybridized MoS2 with highly reactive inner granular Pt catalytic structures. The MoS2/metal microengines display extremely efficient bubble propulsion, reflecting the granular structure of the inner catalytic platinum or gold layers (compared to the smooth metal surfaces of common micromotors). The efficient movement of functionalized MoS2 micromotors can address challenges imposed by slow mass transport processes involved in various applications of MoS2. The delocalized electron network of the MoS2 outer layer facilitates π–π stacking interactions and endows the tubular microengines with a diverse array of capabilities. These are demonstrated here for efficient loading and release of the drug doxorubicin, and rapid and sensitive “OFF–ON” fluorescent detection of important nucleic acids (miRNA‐21) and proteins (thrombin) using microengines modified with dye‐labeled single‐stranded DNA and aptamer, respectively. Such coupling of the attractive capabilities of 2D‐MoS2 nanosheets with rapidly moving microengines provides an opportunity to develop multifunctional micromachines for diverse biomedical applications ranging from efficient drug delivery to the detection of important bioanalytes.  相似文献   

18.
Rapid and effective osseointegration is a great challenge in clinical practice. Endogenous electronegative potentials spontaneously appear on bone defect sites and mediate healing. Thus, bone healing can potentially be stimulated using physiologically relevant electrical signals in implants. However, it is difficult to directly introduce physiologically relevant electric fields in bone tissue. In this study, built‐in electric fields are established between electropositive ferroelectric BiFeO3 (BFO) nanofilms and electronegative bone defect walls to trigger implant osseointegration and biological healing. Epitaxial growth technique is used to organize the crystal panel at an atomic scale, and ferroelectric polarization of BFO nanofilms matching the amplitude and direction of endogenous electric potentials on bone defect walls is achieved. In the presence of built‐in electric fields, implants with BFO nanofilms with downward polarization (BFO+) show rapid and superior osseointegration in the rat femur. The mechanism of this phenotypic osteogenic behavior is further studied by protein adsorption and stem cell behavior in different time points. BFO+ promotes protein adsorption and mesenchymal stem cell (MSC) attachment, spreading, and osteogenic differentiation. Custom‐designed PCR array examination shows sequentially initiated Ca2+ signaling, cell adhesion and spreading, and PI3K‐AKT signaling in MSCs. The results of this study provide a novel strategy for the development of implant surface modification technology.  相似文献   

19.
The possibility of regulating cell signaling with high spatial and temporal resolution within individual cells and complex cellular networks has important implications in biomedicine. This article demonstrates a general strategy that uses near‐infrared tissue‐penetrating laser pulses to uncage biomolecules from plasmonic gold‐coated liposomes, i.e., plasmonic liposomes, to activate cell signaling in a nonthermal, ultrafast, and highly controllable fashion. Near‐infrared picosecond laser pulse induces transient nanobubbles around plasmonic liposomes. The mechanical force generated from the collapse of nanobubbles rapidly ejects encapsulated compound within 0.1 ms. This article shows that single pulse irradiation triggers the rapid intracellular uncaging of calcein from plasmonic liposomes inside endolysosomes. The uncaged calcein then evenly distributes over the entire cytosol and nucleus. Furthermore, this article demonstrates the ability to trigger calcium signaling in both an immortalized cell line and primary dorsal root ganglion neurons by intracellular uncaging of inositol triphosphate (IP3), an endogenous cell calcium signaling second messenger. Compared with other uncaging techniques, this ultrafast near‐infrared light‐driven molecular uncaging method is easily adaptable to deliver a wide range of bioactive molecules with an ultrafast optical switch, enabling new possibilities to investigate signaling pathways within individual cells and cellular networks.  相似文献   

20.
Metallic nanofiber networks (MNFNs) are very promising for next‐generation flexible transparent electrodes (TEs) since they can retain outstanding optical and electrical properties during bending due to their ultralong and submicron profile. However, it is still challenging to achieve cost‐effective and high‐throughput fabrication of MNFNs with reliable and consistent performance. Here, a cost‐effective method is reported to fabricate high‐performance MNFN‐TEs via templated electrodeposition and imprint transfer. The fabricated electrodeposition template has a trilayer structure of glass/indium tin oxide/SiO2 with nanotrenches in the insulating SiO2 that can be utilized for repeated electrodeposition of the MNFNs, which are then transferred to flexible substrates. The fabricated TEs exhibit excellent optical transmittance (>84%) and electrical conductivity (<0.9 Ω sq?1) and show desirable mechanical flexibility with a sheet resistance <2 Ω sq?1 under a bending radius of 3 mm. Meanwhile, the MNFN‐TEs reproduced from the reusable template show consistent and reliable performance. Additionally, this template‐based method can realize the direct patterning of MNFN‐TEs with arbitrary conductive patterns by selective masking of the template. As a demonstration, a flexible dynamic electroluminescent display is fabricated using TEs made by this method, and the light‐emitting pattern is observable from both sides.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号