首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
    
When soluble zinc salts are hydrolyzed in water, usually elongated micrometer‐sized zincite crystals are formed. In this study, polyvinylpyrrolidone (PVP) in a methanolic solution is used as an agent to control the morphology of the deposition product. It prevents crystal growth and yields zinc oxide nanocrystals. Thin films consisting of zinc oxide nanocrystals are formed on self‐assembled monolayers (SAMs) of sulfonate‐terminated alkylsiloxanes. Patterned films are deposited after local decomposition of the SAM by UV irradiation. The films fabricated from methanolic solutions containing PVP are particularly smooth, uniform and stable. Their thickness is determined by the deposition time and the molar ratio [PVP]:[Zn2+], so that films of arbitrary thickness and nearly constant roughness can be obtained. The crystal grains are oriented preferentially with 〈001〉 direction perpendicular to the substrate surface. The films show ultraviolet, orange‐red and green‐yellow photoluminescence; the latter is quenched by heat treatment. Based on the obtained experimental results, a deposition mechanism is suggested.  相似文献   

2.
CVD异质外延金刚石膜最新研究进展   总被引:1,自引:0,他引:1  
评论了国内外化学气相沉积的异质外延金刚石膜制备技术、性质表征以及应用和展望。  相似文献   

3.
    
In this study, thin films of Er2O3 are deposited by low‐pressure metal–organic chemical vapor deposition (MOCVD) using a tris(isopropylcyclopentadienyl)erbium precursor and O2 on various substrates, including p‐type Si(100), Si(111), Corning glass, and c‐axis‐oriented α‐Al2O3(0001). The resulting films are extensively characterized in order to demonstrate their applicability as antireflective and protective coatings and as high‐k gate dielectrics. The interplay existing among the substrate, the nucleation kinetics, and the resulting structural, morphological, optical, and electrical properties of Er2O3 thin films is explored. Fast nucleation governed by surface energy minimization characterizes the growth of (111)‐oriented Er2O3 on Si(100), glass, and α‐Al2O3. Conversely, nonhomogeneous nucleation leads to polycrystalline Er2O3 on Si(111) substrates. Er2O3 films grown on Si(100) possess superior characteristics. A high refractive index of 2.1 at 589.3 nm, comparable to the value for bulk single crystalline Er2O3, a high transparency in the near UV‐vis range, and an optical bandgap of 6.5 eV make Er2O3 interesting as an antireflective and protective coating. A static dielectric constant of 12–13 and a density of interface traps as low as 4.2 × 1010 cm2 eV–1 for 5–10 nm thick Er2O3 layers grown on Si(100) render the present Er2O3 films interesting also as high‐k dielectrics in complementary metal oxide semiconductor (CMOS) devices.  相似文献   

4.
用微波等离子体化学气相沉积法在硅衬底上生长了金刚石薄膜;通过扫描电子显微镜和喇曼散射光谱对其性质进行了表征,将生成的样品分别放在氢氧化钾,四乙基氢氧化铵以及氢氟酸,硝酸和冰到混合液中进行腐蚀研究,结果发现在氢氧化钾腐蚀液中,金刚石薄膜出现片状脱落现象,而在后两种腐蚀液中却表现出良好的抗腐蚀性。  相似文献   

5.
Cd1−xZnxS thin films were grown on soda–lime glass substrates by chemical-bath deposition (CBD) at 80 °C with stirring. All the samples were annealed at 200 °C for 60 min in the air. The crystal structure, surface morphology, thickness and optical properties of the films were studied with transmission electron microscopy (TEM), X-ray diffraction (XRD), scanning electron microscopy (SEM), step height measurement instrument and spectrophotometer respectively. The results revealed that Cd1−xZnxS thin films had cubic crystal structure and the intensity of the diffraction peak increased gradually as ammonia concentration rose and the grain size varied from 5.1 to 8.3 nm. All of Cd1−xZnxS thin films had a granular surface with some smaller pores and the average granule sizes increased from 92 to 163 nm with an increase in ammonia concentration. The Cd1−xZnxS thin films had the highest transmittance with ammonia concentration of 0.5 M L−1, whose thickness was 50 nm and band gap was 2.62 eV.  相似文献   

6.
在直接耦合式微波等离子体化学气相沉积金刚石膜装置的石英管反应腔加上磁镜场来更好地约束等离子体,使等离子体球成为“碟盘”状,提高了等离子体球的密度,在基本参数:反应压力2.5kPa、基片温度450℃、气体流量为Ar:40sccm、CH4:4sccm、Hz:60sccm不变的情况下,沉积面积直径由30mm增长到50mm,沉积速度由3.3μm/h增长到3.8μm/h,最大反射电流由15μA减小5μA。从而大大减少了在石英管壁和观察窗的沉积,有效利用微波能量电离出更多的活性基团沉积出高质量的(类)金刚石薄膜。  相似文献   

7.
类金刚石薄膜的Raman光谱分析及红外光谱特性   总被引:3,自引:0,他引:3  
用酒精和氢气的混合气体为工作气体 ,在不同的酒精浓度下 (1 0 % ,1 5% ,2 0 % )下利用微波等离子体化学气相沉积法在较低温度下 (450~ 50 0℃ )以单晶硅为衬底制备出类金刚石薄膜样品。 Raman光谱分析了酒精浓度对薄膜中金刚石成份的含量的影响。红外光谱分析表明薄膜的红外光透过率与薄膜的表面形貌、薄膜结构有关。酒精浓度为 1 0 %时得到的金刚石薄膜的红外光透过率最高 ,达到 62~ 72 % ,同时透过率曲线因薄膜干涉而引起的振荡也最为显著。  相似文献   

8.
Adhesion studies of CVD copper metallization   总被引:2,自引:0,他引:2  
The adhesion of chemical vapor deposition (CVD) Cu thin films to various barriers was observed to improve with a post-deposition anneal or a physical vapor deposition (PVD) Cu flash layer on the barrier before depositing CVD Cu. The ambient exposure of the barrier before the deposition of CVD Cu has been observed to lead to degradation of adhesion in both CVD Cu seed and CVD/PVD Cu high vacuum integrated metallization schemes. The integrated CVD and PVD Cu deposition scheme exhibits better adhesion due to the inherent annealing provided during the PVD deposition which is carried out at temperatures between 300 and 400°C. We have evaluated both qualitative and quantitative tests — tape test, Stud pull test and 4-point bend test — in understanding adhesion and observed that each of these tests give different details of interface breakdown.  相似文献   

9.
    
Chemical solution deposition of semiconductor films has been confined almost entirely to chalcogenides. Here, we extend this technique to halide films. Silver halides (AgI, AgBr, and AgCl) were deposited using in‐situ homogeneous hydrolysis of organic haloalcohols to form halide ions that react with silver ions in aqueous solution. Also, a rapid precipitation method is described that gives AgCl films. Structural (XRD), morphological (TEM), and optical (transmission spectra) characterizations of the films are presented. Some preliminary results and ideas on other halide films are presented.  相似文献   

10.
    
A series of poly(oligothienylene vinylenes) (PTmVs, m = 2–4) with a varying number of consecutively bound thienylene rings are successfully prepared in thin films by chemical vapor deposition polymerization (CVDP) using the corresponding bis(halomethyl)thiophenes as starting materials. The chemical and electronic structures are studied spectroscopically and also by cyclic voltammetry. Top‐gate field‐effect transistors are fabricated by two consecutive CVDP cycles of PTmV and poly(p‐xylylene) followed by the deposition of a Au gate electrode. In the case of a PT3V active layer, a field‐effect mobility value of 0.5 × 10–4 cm2 V–1 s–1 is obtained.  相似文献   

11.
Atmospheric pressure chemical vapor deposition (APCVD) of tungsten films using WF6/H2 chemistry has been studied. A statistical design of experiments approach and a surface response methodology were used to determine the most important process parameters and to obtain the best quality film possible in the parameter range studied. It was found that the deposition rate depends strongly on WF6 flow rate, temperature, and the interaction between hydrogen flow rate and temperature. The resistivity was found to have a strong dependence on WF6 and H2 flow rates and temperature. An activation energy of 0.4 eV was calculated for the reaction rate limited growth regime. Empirical equations for predicting the deposition rate and resistivity were obtained. The resistivity decreases with both increasing film thickness and grain size. The films grown in the studied process parameter range indicate that (110) is the preferred orientation for films deposited with low WF6/H2 flow rate ratios at all deposition temperatures (350–450°C), whereas, the (222) orientation dominates at high WF6/H2 flow ratios and high deposition temperatures. Also, the grain size is larger for (222) oriented films than for (110) oriented films. The results of this study suggest that high-quality, thin film tungsten can be deposited using APCVD.  相似文献   

12.
13.
    
CdO nanonecklace like structure with interconnected nanobeads were produced by air annealed Cd(OH)2 nanowire structure thin film at 290 °C. Simple and low cost chemical route has been successfully employed for the synthesis of Cd(OH)2 nanowires on fluorine doped tin oxide (FTO) coated glass substrates at room temperature (27 °C). Structural analysis confirmed the conversion of hydroxide phase to the oxide phase by annealing which also leads to change in optical band gap from 3.5 to 2.34 eV. The necklace like nanostructure represent unique surface morphology which can be emerged as a potential candidate towards wide range of applications in different fields of nanotechnology such as solar cell, gas sensor, supercapacitor and photo-catalyst.  相似文献   

14.
    
Simultaneous improvement of mechanical properties and lowering of the dielectric constant occur when films grown from the cyclic monomer tetravinyltetramethylcyclotetrasiloxane (V4D4) via initiated chemical vapor deposition (iCVD) are thermally cured in air. Clear signatures from silsesquioxane cage structures in the annealed films appear in the Fourier transform IR (1140 cm?1) and Raman (1117 cm?1) spectra. The iCVD method consumes an order of magnitude lower power density than the traditional plasma‐enhanced CVD, thus preserving the precursor's delicate ring structure and organic substituents in the as‐deposited films. The high degree of structural retention in the as‐deposited film allows for the beneficial formation of intrinsically porous silsesquioxane cages upon annealing in air. Complete oxidation of the silicon creates ‘Q’ groups, which impart greater hardness and modulus to the films by increasing the average connectivity number of the film matrix beyond the percolation of rigidity. The removal of labile hydrocarbon moieties allows for the oxidation of the as‐deposited film while simultaneously inducing porosity. This combination of events avoids the typical trade‐off between improved mechanical properties and higher dielectric constants. Films annealed at 410 °C have a dielectric constant of 2.15, and a hardness and modulus of 0.78 and 5.4 GPa, respectively. The solvent‐less and low‐energy nature of iCVD make it attractive from an environmental safety and health perspective.  相似文献   

15.
摘要:本文在陶瓷衬底上面利用磁控溅射的方法镀上一层厚金属钛,用不同方法对金属钛层进行表面处理,处理后的衬底放在微波等离子体化学气相沉积腔中,在相同的沉积条件下制备出不同微米金刚石薄膜。对不同的薄膜的微观表面形态、结构组成进行对比研究;对不同的薄膜用二极管型结构测试了它们的场致发射电子的性能,并对发射机理进行了深入的研究。最终分析出不同方法处理的衬底,对微米金刚石聚晶薄膜生长及场发射特性的影响的原因。  相似文献   

16.
    
ZnS thin films were deposited at different temperatures on glass substrates by chemical bath deposition method without stirring the deposition bath. With deposition temperature increasing from 50 °C to 90 °C, pH decreases rapidly, homogeneous precipitation of ZnS, instead of Zn(OH)2 easily forms in the bath. It means that higher temperature is favorable for the formation of relatively high stoichiometric film, due to the lower concentration of OH. The thickness of the films deposited at 90 °C is much higher than that of the films deposited at 50 °C and 70 °C. Combining the film thickness with the change of pH, the growth of film, especially deposited at 90 °C mainly comes from the fluctuation region of pH. At the same time, with the increase of deposition temperature, the obtained films are transparent, homogeneous, reflecting, compact, and tightly adherent. The ZnS films deposited for 1.5 h, 2 h and 2.5 h at 70 °C and 90 °C have the cubic structure only after single deposition. The average transmission of all films, especially the thicker films deposited at 90 °C, is greater than 90% for wavelength values in the visible region. Comparing with the condition of stirring, the structural and optical properties of films are improved significantly. The direct band gaps range from 3.93 to 4.06 eV.  相似文献   

17.
    
The techniques of initiated chemical vapor deposition (iCVD) and oxidative chemical vapor deposition (oCVD) enable the fabrication of chemically well‐defined thin polymeric films on complex objects with micro‐ and nano‐scale features. By depositing polymers from the vapor phase, many wetting and solution effects are avoided, and conformal films can be created. In iCVD, a variant of hot filament CVD, the deposition rate is enhanced and chemical functionalities of the polymers' constituents are maintained by including a thermally labile initiator in the feed stream. Due to the low energy required when using an initiator, delicate substrates can be coated. In oCVD, infusible, electrically conductive films are formed directly on the substrate of interest as the oxidant and monomer are introduced into the reactor simultaneously. This Feature Article provides an overview of the work that has been done to develop iCVD and oCVD into platform technologies. Relevant background, fundamentals, and applications will be discussed.  相似文献   

18.
The deposition of diamond-like carbon (DLC) films from a mixture of hydrogen and methane using the electron resonance chemical vapor deposition (ECR-CVD) method with radio-frequency (rf) bias is reported. The structural characteristics of the DLC films were characterized using Raman spectroscopy. The effects of the self-generated dc bias resulting from the rf power on the optical gap, Raman spectra, infrared (IR) absorption, and film hardness in depositions carried out at 7 and 15 mTorr process pressures were investigated. Under conditions of 100 W microwave power and for dc bias variation ranging from −10 to −200 V, there is evidence from Raman scattering analysis to show an increase in the DLC-like characteristic in films deposited at low dc bias at both process pressures. The variation of the D and G line peak position and intergrated intensity ratio (ID/IG) in the Raman spectra correlates well with the film hardness profile. There does not seem to be a relationship between the variation of the C-H absorption peak intensity in the IR spectra (bonded hydrogen content) and the optical gap, although films with the highest optical gap tend to show a relatively higher C-H absorption peak intensity in the IR spectra. Films deposited at high dc bias showed a reduction in the C-H infrared absorption, suggesting a reduction in the bonded hydrogen content.  相似文献   

19.
The growth of nanocrystalline zinc sulfide thin films onto glass substrates by chemical bath deposition has been optimized at acidic pH. Powder X-ray diffraction (p-XRD) confirms the deposition of sphalerite, the cubic phase of ZnS. The crystallite size calculated by Scherrer equation was found to be 4.0 nm. Scanning Electron Microscopy (SEM) show clusters of spherical nanoparticles uniformly distributed over the surface of the glass substrates. Energy Dispersive X-ray (EDX) analysis of the deposited thin films show the zinc to sulfur ratio close to 1:1. The observed band gap (3.78 eV) of the deposited thin films is higher than that reported for cubic phase of bulk ZnS (3.54 eV) as expected due to nano-size crystallites. Binding energies calculated by X-ray Photoelectron Spectroscopy (XPS) confirm the material as ZnS and the photoluminescence measurements show the blue shift in emission maximum.  相似文献   

20.
The growth of monophasic iron sulfide thin films onto glass substrates has been achieved by chemical bath deposition at acidic values of pH. Powder X-ray diffraction (p-XRD) confirms the deposition of tetragonal FeS (mackinawite) with preferred orientation along (001) plane. The crystallite size estimated by Scherrer equation was found to be 14 nm. Scanning electron microscopy (SEM) shows the formation of nanoflakes as base layer and nanoflowers as top layer. Energy Dispersive X-ray (EDX) analysis of the deposited iron sulfide thin films shows the iron to sulfur ratio close to 1:1 confirming the deposition of FeS. UV–vis absorption spectroscopy showed a blueshift due to the nanosize crystallites FeS with a band gap of 1.87 eV.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号