首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
In the present study, hydrogels were prepared by free radical polymerization in water?Cdioxane mixture with fixed molar ratio (25?mol%) of N-isopropylacrylamide (NIPAM) and varying remaining molar concentrations of N-tert-butylacrylamide (NTBA) and acrylamide (AAm). The structure of the resultant hydrogels was studied by Fourier transform infrared (FTIR) spectroscopy and scanning electron microscopy (SEM) techniques. The thermal properties of the hydrogels were analyzed by thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC) methods. DSC thermograms were used for the quantitative determination of free, interfacial and bound water contents. The result showed that the free and interfacial water contents increased with increase in the hydrophilic AAm content, and the bound water content increased with hydrophobic NTBA content in the hydrogels. Swelling behavior of the hydrogels was evaluated at different temperatures. The percentage swelling and diffusion kinetic parameters (network structure constant, type of diffusion and diffusion constant) were calculated for all samples. The diffusion was found to be Fickian type for copolymer having equimolar concentrations of NTBA and AAm and non-Fickian type for others. Diffusion coefficients of the hydrogels were found to be increased with increasing temperature. In addition, poly(NIPAM-co-NTBA-co-AAm) hydrogels were used in concentration separation process for BSA solution. The result showed that the copolymer with equimolar NTBA and AAm contents has high separation efficiency with good thermoresponsive behavior among all copolymers.  相似文献   

2.
Environmentally sensitive hydrogels responsive to various stimuli such as temperature, pH, ionic strength of the medium and the solvent were prepared by using N‐isopropyl acrylamide (NIPAM), acrylamide (AAm) and monomers that have various number of carboxylic acid (XA) functionality using N,N′‐methylene bisacrylamide (Bis) as crosslinker. Hydrogels were prepared via free radical polymerization reaction in aqueous solution. P(NIPAAm‐co‐AAm) and p(NIPAAm‐co‐AAm)/XA hydrogels that contain monoprotic crotonic acid (CA) exhibit a lover critical solution temperature (LCST) at 28°C, whereas p(NIPAAm‐co‐AAm)/IA (IA:itaconic acid), and P(NIPAAm‐co‐AAm)/ACA (ACA:acotonic acid) hydrogels exhibit a lover critical solution temperature at 30.7°C and 34.4°C, respectively. Spectroscopic and thermal analyses were performed for the structural and thermal characterizations of the prepared hydrogel. The swelling experiments as equilibrium swelling percentages by gravimetrically were carried out in different solvents, at different solutions temperature, pH, and ionic strengths to determine their effects on swelling characteristic of hydrogels. POLYM. ENG. SCI., 55:843–851, 2015. © 2014 Society of Plastics Engineers  相似文献   

3.
Summary: Temperature‐responsive hydrogels based on linear HPC and crosslinked P(NTBA‐co‐AAm) were prepared by the semi‐IPN technique. The structure of these semi‐IPN hydrogels was investigated by FT‐IR spectroscopy. An increase in normalized band ratios (A2980/A1665) was observed with increasing HPC content in the initial mixture. The swelling kinetics and water transport mechanism of these semi‐IPN hydrogels were examined and their temperature responsive behaviors were also investigated by measuring equilibrium swelling ratios and pulsatile swelling experiments. The results showed that these semi‐IPN hydrogels underwent a volume phase transition between 18 and 22 °C irrespective of the amounts of MBAAm and HPC. However, below the volume phase transition temperature, their equilibrium swelling ratios were affected by the amount of MBAAm and HPC. The pulsatile swelling experiments indicated that the lower the MBAAm and the higher HPC contents in semi‐IPN hydrogels the faster the response rate temperature change.

Equilibrium swelling ratios of the semi‐IPN P(NTBA‐co‐AAm)/HPC hydrogels in water shown as a function of temperature.  相似文献   


4.
Magnetic‐field‐sensitive gel, called ferrogel, was prepared by a two‐step procedure in which first step requires synthesis of the poly(Ntert‐butylacrylamide‐co‐acrylamide) [P(NTBA‐co‐AAm)] hydrogel and during second step magnetite (Fe3O4) particles were formed in the hydrogel via coprecipitation of Fe(II) and Fe(III) ions in alkaline medium at 70°C. The obtained ferrogel was characterized by attenuated total reflectance Fourier transform infrared spectroscopy, thermogravimetric analysis, scanning electron microscopy combined with energy dispersive spectroscopy, and electron spin resonance measurements. The magnetic responsive of the ferrogel was also investigated by applying magnetic field to the ferrogel. The extent of a bending degree of the ferrogel depends on the applied magnetic field strength. In addition, the magnetic responsive studies also indicated that formed magnetite content in the hydrogel is high enough to achieve considerable magnetic response to external magnetic field. As a result, the P(NTBA‐co‐AAm) ferrogel may be useful for potential applications in magnetically controlled drug release systems, magnetic‐sensitive sensors, and pseudomuscular actuators. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

5.
Aniline/p‐phenylenediamine copolymer [poly(ANI‐cop‐PDA)] was prepared by chemical oxidative polymerization. FTIR and 1H‐NMR analysis indicate that the poly(ANI‐cop‐PDA) is oligomer with end‐capped amino groups, which can cure epoxy resin. The anticorrosion performance of carbon steel (CS) samples coated by epoxy resin coating cured with poly(ANI‐cop‐PDA) and epoxy resin coating cured with triethylenetetramine exposed to 5 wt % NaCl and 0.1 mol/L HCl aqueous solution is studied by the potentiodynamic polarization and electrochemical impedance spectroscopy. The results show that the CS coated by epoxy resin coating cured with poly (ANI‐cop‐PDA) has more excellent corrosion protection than that of epoxy resin coating cured with triethylenetetramine. Raman spectroscopy analysis indicates that the surface of CS coated by epoxy resin coating cured with poly(ANI‐cop‐PDA) forms passive layer, which is composed of α‐Fe2O3. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

6.
This article reports a facile one‐step methodology to increase fire resistance properties of cotton fabric. The flame‐retardant coating for cotton fabric was synthesized with methyltriethoxysilane and organophosphates (M102B) through an ultrasound irradiation process. The coating structure and surface morphology of uncoated and coated fabrics were investigated by Fourier transform infrared spectroscopy and scanning electron microscope, respectively. The flame‐retardant properties, bending modulus, air permeability and thermal stability were studied by vertical burning test, cantilever method, air permeability test and thermogravimetric analysis (TGA). As a result, the cotton fabric coated with 29.2% (mass increased) of flame‐retardant coating was able to balance the flame retardant property and wearing comfort of the fabrics. The TGA results showed that the residue char of cotton was greatly enhanced after treatment with the coating, which has a high char forming effect on cellulose during testing. Furthermore, flame‐retardant property of coated fabrics did not change significantly after 10 washing cycles. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 45114.  相似文献   

7.
The demand for fluoride‐free and durable hydrophobic cotton fabric is dramatically increasing due to environmental and human safety concerns. The current approach to produce water repellent cotton fabrics is applying fluorocarbon compounds in topical treatments. However, the fluorocarbons employed in the water repellent treatments on cotton fabrics have environmental concerns and environmentally friendly technologies are desperately sought. Herein, we report a new approach of fabricating water repellent cotton fabrics with proper washing durability by using poly{dimethylsiloxane‐co‐[2‐(3,4‐epoxycyclohexyl)ethyl]methylsiloxane} (CPDMS) as a hydrophobic agent. Benefiting from formation of robust ether bonds between CPDMS and celluloses, the cotton fabrics could gain promising durability for daily laundry. The resultant cotton fabrics demonstrated simultaneously desired waterproofness (hydrostatic pressure up to 22 mbar), durability (hydrostatic pressure stabled at 12 mbar after five laundry cycles), and breathability. Moreover, the CPDMS modified cotton fabrics also exhibited robust physical property with tensile strength retention up to 73%. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46396.  相似文献   

8.
A series of thermo‐ and pH‐sensitive poly (N,N‐diethylacrylamide‐co‐acrylic acid) (P(DEA‐co‐AA)) hydrogels were prepared in NaCl aqueous solutions with different concentrations. Swelling and deswelling studies showed that in comparison with conventional P(DEA‐co‐AA) hydrogels (prepared in distilled water), the P(DEA‐co‐AA) hydrogels thus prepared had almost the same volume phase transition temperature (VPTT), but exhibited much faster response rates as the temperature was raised above their VPTT. Besides, the hydrogels prepared by this method had faster response rates in low pH buffer solutions, and the response rates increased with the increased concentration of the NaCl solutions used during the polymerization. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

9.
Poly(acrylamide‐co‐maleic acid) [P(AAm/MA)] hydrogels, with various compositions, were prepared from ternary mixtures of acrylamide (AAm)/maleic acid (MA)/water by using 60Co γ‐rays. The effect of composition of these hydrogels, on the competitive removal of Pb2+, Cd2+, and Zn2+ ions from aqueous solution, was investigated. The hydrogel compositions and their adsorption behaviors were determined by use of differential pulse polarography, a very sensitive electroanalytical technique. It was observed that the external stimuli of pH, temperature, and ionic strength have an important role on the adsorption. The increments of MA content in P(AAm/MA) hydrogels caused a significant increase in the adsorption these ions. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 94: 2401–2406, 2004  相似文献   

10.
Functional polymer modified carbon black (CB) pigment (P‐(DMC‐co‐CHPMA)‐g‐MPTS/CB) with reactive epoxy and quaternary ammonium groups was designed and prepared via a thiol‐ene click chemistry reaction, and its dispersion ability in the aqueous phase, as well as its colouring and anti‐bacterial properties for cotton fabrics, were investigated. In considering both dispersion ability and reactive ability to cotton fabric, the mole ratio of the monomers (methacrylatoethyl trimethyl ammonium chloride [DMC] and 3‐chloro‐2‐hydroxypropyl methacrylate [CHPMA]) was discussed. Morphology and chemical properties of P‐(DMC‐co‐CHPMA)‐g‐MPTS/CB were tested by scanning electron microscopy, transmission electron microscopy, thermogravimetric analysis and X‐ray photoelectron spectroscopy, resulting in a weight content of copolymer (DMC‐co‐CHPMA) in P‐(DMC‐co‐CHPMA)‐g‐MPTS/CB of ca. 18%. P‐(DMC‐co‐CHPMA)‐g‐MPTS/CB was fixed onto cotton fabric via a nucleophilic‐substituted reaction between reactive epoxy groups on the CB surface and the hydroxyl groups of cotton fabric, which endowed good fastness to cotton fabric without either a fixing or an adhesive agent. Also, coloured cotton fabric demonstrated excellent anti‐bacterial activity towards Staphylococcus aureus and Escherichia coli O157:H7.  相似文献   

11.
In this study, acrylamide (AAm) was grafted onto poly(vinyl alcohol) (PVA) in solution with UV radiation, and membranes were prepared from the graft copolymer (PVA‐g‐AAm) for transdermal release of salicylic acid (SA) at in vitro conditions. Permeation studies were carried out using a Franz‐type diffusion cell. Release characteristics of SA through PVA and PVA‐g‐AAm membranes were studied using 2.0 mg/mL SA solutions. Effects of the presence of AAm in the copolymer, pH of donor and acceptor solution, and concentration of SA and temperature on the release of SA were investigated. Permeation of SA through the membranes was found to be pH‐dependent, and increase in pH generally increased the release percentage of SA, and the presence of AAm in the membrane positively affected the permeation. The effect of concentrations of SA on the permeation was also searched using saturated solution of SA, and permeated amount of SA was found to be less than in the case of unsaturated SA solution. Studies showed that the release of SA from PVA‐g‐AAm membranes was temperature‐sensitive and increase in temperature increased the permeation rate. 82.76% (w/w) SA was released at the end of 24 h at (39 ± 1)°C, and the overall activation energy for the permeation of SA through PVA‐g‐AAm membranes was found to be 19.65 kJ/mol. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

12.
Temperature sensitive random linear and crosslinked copolymers of N‐tert‐butylacrylamide (NTBA) and acrylamide (Am) were synthesized by the solution polymerization method, using regulated dosing of comonomer Am having a higher reactivity ratio (rAm = 1.5) than NTBA (rNTBA = 0.5). Copolymers with varying feed ratios of NTBA and Am (80 : 20 to 20 : 80 mol %) were synthesized and characterized. For the synthesis of copolymer hydrogels, N′, N‐methylene bisacrylamide (MBA) (1.13 mol %) was used along with monomers. The effect of composition on transition properties was evaluated for the linear copolymers and their hydrogels. A definite trend was observed. The incorporation of a higher percentage of the hydrophilic comonomer Am in the structure resulted in the shifting of the transition temperature towards a higher value. The transition temperatures of the copolymers synthesized with feed compositions of 80 : 20, 70 : 30, 60 : 40, 50 : 50, 40 : 60, 30 : 70, and 20 : 80 mol % were found to be 2, 10, 19, 27, 37, 45, and 58°C, respectively. Differential scanning calorimetry (DSC) studies confirmed the formation of random copolymers. The copolymers synthesized with a monomer feed ratio of 50 : 50 with regulated dosing showed a single glass transition temperature (Tg) at 168°C, while the copolymer synthesized with full dosing of Am at the beginning of the reaction showed two Tgs, at 134 and 189°C. The copolymer samples were analyzed by Fourier transform infrared spectroscopy (FTIR) for ascertaining the composition. The composition of the copolymers followed the trend of the feed ratio, but the incorporation of NTBA in the copolymers was found to be lower than the feed ratio because of lower than quantitative yields of the reactions. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 95: 672–680, 2005  相似文献   

13.
In this study, flame retardancy properties of fabrics treated with phosphorous (P) doped and undoped SiO2 thin films were developed by sol–gel technique. As to this aim, P‐doped and undoped SiO2 film were coated on cotton fabric from the solutions prepared from P, Si‐based precursors, solvent, and chelating agent at low temperature in air using sol–gel technique. To determine solution characteristics, which affect thin film structure, turbidity, pH values, and rheological properties of the prepared solutions were measured using a turbidimeter, a pH meter, and a rheometer machines before coating process. The thermal, structural, and microstructural characterization of the coating were done using differential thermal analysis/thermograviometry, fourier transform infrared spectroscopy, X‐ray diffractometry, and scanning electron microscopy. In addition, tensile strength, wash fastness, flame retandancy, and lightness properties of the coated fabrics were determined. To compensate the slight loss of tensile strength of samples, which occurred at the treated fabrics with P‐doped Si‐based solutions, the cotton fabrics were coated with polyurethane films during second step. In conclusion, the flame retardant cotton fabric with durability of washing as halogen‐free without requiring after treatment with formaldehyde was fabricated using sol–gel processing for the first time. Moreover the cotton fabrics, which were treated with P‐doped Si‐based solutions and then coated with polyurethane at second step, still has got nonflammable property. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2007  相似文献   

14.
Poly(acrylamide‐co‐potassium methacrylate) hydrogels were prepared by free‐radical simultaneous polymerization with aqueous solutions of acrylamide (AAm) and potassium methacrylate (KMA) with a redox initiator. The copolymerization was performed with eight different compositions of KMA at a fixed concentration of oil‐soluble crosslinkers, including 1,4‐butanediol diacrylate and ethylene glycol dimethacrylate (EGDMA). For every composition of AAm/KMA copolymer, the percentage swelling, swelling equilibrium, and diffusion characteristics were investigated. The copolymers were further studied for deswelling properties. The power law relationships of the hydrogels were evaluated for variation in terms of saline concentration. The AAm/KMA copolymers were confirmed by IR spectroscopy. Thermal studies of hydrogels were performed with differential scanning calorimetry and thermogravimetric analysis. EGDMA was found to be a better crosslinker for obtaining higher swelling and deswelling properties for the AAm/KMA hydrogels. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 96: 1153–1164, 2005  相似文献   

15.
BACKGROUND: A considerable amount of research has been focused on smart hydrogels that can respond to external environmental stimuli, especially temperature and pH. In this study, fast responsive thermo‐ and pH‐sensitive poly[(N,N‐diethylacrylamide)‐co‐(acrylic acid)] hydrogels were prepared by free radical copolymerization in aqueous solution using poly(ethylene glycol) (PEG) as a pore‐forming agent. RESULTS: Swelling studies showed that the hydrogels produced had both temperature and pH sensitivity. The deswelling kinetics at high temperature demonstrated that the shrinking rates were influenced by the addition of the pore‐forming agent and the amount of acrylic acid in the initial total monomers. The deswelling curves in low‐buffer solutions had two stages. Pulsatile swelling studies indicated that the PEG‐modified hydrogels were superior to the normal ones. These different swelling properties were further confirmed by the results of scanning electron microscopy. CONCLUSION: Such fast responsive thermo‐ and pH‐sensitive hydrogels are expected to be useful in biomedical fields for stimuli‐responsive drug delivery systems. Copyright © 2008 Society of Chemical Industry  相似文献   

16.
Summary: The swelling equilibrium of poly(acrylamide) [PAAm] and poly[acrylamide‐co‐(itaconic acid)] [P(AAm/IA)] hydrogels was studied as a function of temperature and IA content in aqueous solutions of surfactants: sodium dodecyl sulfate (SDS, anionic) and hexadecyltrimethylammonium bromide (HTAB, cationic). P(AAm/IA) hydrogels in water exhibited reentrant conformational transitions depending on temperature, whereas PAAm hydrogels were not affected with the change of temperature. The equilibrium‐volume‐swelling ratio of P(AAm/IA) hydrogels increased sharply in SDS solutions, with an increase of the mole percent of IA. However, in HTAB solution, the equilibrium‐volume‐swelling ratio of these hydrogels decreased with an increase of IA content.

The equilibrium volume‐swelling ratios of the hydrogels in water shown as a function of temperature.  相似文献   


17.
Thin films of environmentally safe, halogen free, anionic sodium phosphate and cationic polysiloxanes were deposited on a Nyco (1:1 nylon/cotton blend) fabric via layer‐by‐layer (LbL) assembly to reduce the inherent flammability of Nyco fabric. In the coating process, we used three different polysiloxane materials containing different amine groups including, 35–45% (trimethylammoniummethylphenythyl)‐methyl siloxane‐55‐65% dimethyl siloxane copolymer chloride salt (QMS‐435), aminoethylaminopropyl silsesquioxane‐methylsilsesquioxane copolymer oligomer (WSA‐7021) and aminopropyl silesquioxane oligomers (WSA‐991), as a positive polyelectrolyte. Thermo‐gravimetric analysis showed that coated fabric has char yield around 40% at 600 °C whereas control fabric was completely consumed. The vertical flame test (VFT) on the LbL‐coated Nyco fabric was passed with after flame time, 2 s, and the char length of 3.81 cm. Volatile and nontoxic degradation products of flame retardant‐coated fabric were analyzed by pyrolysis gas chromatography mass spectroscopy (Py‐GCMS). Surface morphology of coated fabrics and burned fabric residues were studied by scanning electron microscopy. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

18.
BACKGROUND: Responsive materials are able to respond reversibly to an environmental stimulus. When the stimulus is temperature in the physiological range, the responsive material is particularly interesting for textile applications. We describe here the synthesis and characterization of reactive temperature‐responsive copolymers and their subsequent grafting on cotton fabrics. RESULTS: Copolymers of N‐vinylcaprolactam and various reactive monomers were synthesized via free radical polymerization in solution. The copolymers were characterized in terms of chemical structure, molecular weight and temperature‐responsive properties. The copolymer of N‐vinylcaprolactam and methacrylic acid (11 or 22 wt%) and the hydrolysed copolymer of N‐vinylcaprolactam and acryloyl chloride were found to be temperature responsive. They were subsequently grafted on cotton fabrics. The grafting was studied using X‐ray photoelectron spectroscopy and scanning electron microscopy measurements and was found to be effective. Finally, the modified cotton fabrics were found to exhibit temperature‐responsive water regain and water vapour transmission rates. CONCLUSION: Temperature‐responsive copolymers were synthesized, characterized and successfully grafted on cotton fabrics, yielding responsive fabrics. Such fabrics can hence be used to modulate the skin microclimate under textiles. Copyright © 2009 Society of Chemical Industry  相似文献   

19.
A series of temperature‐ and pH‐responsive hydrogels were prepared from acrylic acid (AAc), acrylamide (AAm), oligo(ethylene glycol)monoacrylate (OEGMA), and oligo(ethylene glycol)diacrylate by varying the AAc:AAm molar ratio and the OEGMA content. Phase‐transition temperatures and swelling ratios of the obtained poly(AAc‐co‐AAm)‐graft‐OEG gels were measured as a function of temperature and pH. At pH < 5, the obvious transition temperatures ranging from 5 to 35°C were obtained as the AAc : AAm molar ratio was varied. The highest transition temperature was obtained at the AAc : AAm ratios of 5 : 5 and 6 : 4, and the sharp transition curves were observed at the AAc : AAm ratios from 5 : 5 to 8 : 2. The transition temperature further increased with increasing OEGMA content. It was suggested that OEG graft chains with a large mobility played an important role for the formation of hydrogen bonding in the hydrogels. The gels prepared here showed obvious reproducibility of the phase transition in response to temperature changes, which suggests the feasibility of their practical applications. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 80: 798–805, 2001  相似文献   

20.
Macroporous superabsorbent hydrogels (SAHs) composed of acrylamide (AAm) and sodium methacrylate (NMA) were prepared by aqueous solution polymerization in the presence of a glucose solution. Their swelling capacity was investigated as a function of the concentrations of the glucose solution, sodium methacrylate, crosslinker, initiator, and activator. The porosity of the poly(acrylamide‐co‐sodium methacrylate) superabsorbent hydrogels was confirmed using scanning electron microscopy. The SAHs were characterized by IR spectroscopy. To estimate the effect on the swelling behavior, three types of crosslinkers were employed: N,N′‐methylenebisacrylamide, 1,4‐butanediol diacrylate, and diallyl phthalate. Network structural parameters such as initial swelling rate, swelling rate constant, and maximum equilibrium swelling were evaluated by water absorption measurement. The equilibrium water content (EWC%) of the AAm–NMA macroporous SAHs was found to be in the range of 93.31–99.68, indicating that these SAHs may have applications as biomaterials in the medicinal, pharmaceutical, and veterinary fields. Most of the SAHs prepared in this investigation followed non‐Fickian‐type diffusion, and few followed a case II– or super–case II‐type diffusion. The diffusion coefficients of these macroporous SAHs were investigated. Further, the swelling behavior of these SAHs also was investigated at different pHs and in different salt solutions and simulated biological fluids. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 101: 3202–3214, 2006  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号