首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper provides a comprehensive treatment of full‐block multipliers within the integral quadratic constraints framework for stability analysis of feedback systems containing repeated, slope‐restricted scalar nonlinearities. We develop a novel stability result that offers more flexibility in its application because it allows for the inclusion of general Popov and Yakubovich criteria in combination with the well‐established Circle and Zames‐Falb stability tests within integral quadratic constraint theory. A particular focus lies on the formulation of stability criteria in terms of full‐block multipliers, some of which are new, and thus typically involve less conservatism than current methods. Furthermore, a new asymptotically exact parametrization of full‐block Zames‐Falb multipliers is given that allows to exploit the complete potential of this stability test. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

2.
Stability conditions for time‐delay systems using the Lyapunov‐based methodologies are generically expressed in terms of linear matrix inequalities. However, due to assuming restrictive conditions in deriving the linear matrix inequalities, the established stability conditions can be strictly conservative. This paper attempts to relax this problem for linear systems with interval time‐varying delays. A double‐integral inequality is derived inspired by Wirtinger‐based single‐integral inequality. Using the advanced integral inequalities, the reciprocally convex combination techniques and necessary slack variables, together with extracting a condition for the positive definiteness of the Lyapunov functional, novel stability criteria, have been established for the system. The effectiveness of the criteria is evaluated via 2 numerical examples. The results indicate that more complex stability criteria not only improve the stability region but also bring computational expenses.  相似文献   

3.
In this paper, a novel dynamic event‐triggered control scheme is presented for linear time‐invariant systems. Under this control scheme, criteria that guarantee the asymptotic stability and the ‐stability are derived, by which the triggered parameters and the feedback gain can be codesigned. The stability criteria are derived by using Lyapunov‐based analysis tools, and a new Lyapunov‐Krasovskii functional is constructed to further reduce conservatism. Moreover, the projection technique and the mathematical induction are introduced in the stability analysis. Compared with the existing results for static strategies, the proposed dynamic strategy is more flexible and generates fewer events. Finally, simulation examples are provided to demonstrate the effectiveness of this new scheme.  相似文献   

4.
In this paper, the problem of robust sampled‐data control for Itô stochastic Markovian jump systems (Itô SMJSs) with state delay is investigated. Using parameters‐dependent Lyapunov functionals and some stochastic equations, we give stochastic sufficient stability criteria for polytopic uncertain Itô SMJSs. As a corollary, stochastic sufficient stability criteria are given for nominal Itô SMJSs. For this two cases of Itô SMJSs, based on the obtained stochastic stability criteria, their time‐independent sampled‐data controllers are designed, respectively. Then, for designing a time‐dependent sampled‐data controller for Itô SMJSs, a parameters‐dependent time‐scheduled Lyapunov functional is developed. New stochastic sufficient stability criteria are obtained for polytopic uncertain Itô SMJSs and nominal Itô SMJSs. Furthermore, their time‐dependent sampled‐data controllers are designed, respectively. Lastly, a numerical example is provided to illustrate the effectiveness of the proposed method.  相似文献   

5.
This paper is concerned with quantitative analysis and synthesis for a networked control system under simultaneous consideration of non‐uniformly distributed packet dropouts, interval time‐varying sampling periods and network‐induced delays. A new packet dropout separation method is proposed to separate packet dropouts from the lump sum of network‐induced delays and packet dropouts. An interval time‐varying sampling period approach, which is more general than a switched sampling period approach, is presented to model the variation of the sampling period. Then a packet dropout decomposition‐based Lyapunov functional is constructed to drive some stability criteria. Based on these stability criteria, a state feedback controller is designed to asymptotically stabilize the networked system in the sense of mean‐square. Numerical examples are given to illustrate the effectiveness of the obtained results. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

6.
This paper concerns delay‐range‐dependent robust stability and stabilization for time‐delay system with linear fractional form uncertainty. The time delay is assumed to be a time‐varying continuous function belonging to a given range. On the basis of a novel Lyapunov–Krasovskii functional, which includes the information of the range, delay‐range‐dependent stability criteria are established in terms of linear matrix inequality. It is shown that the new criteria can provide less conservative results than some existing ones. Moreover, the stability criteria are also used to design the stabilizing state‐feedback controllers. Numerical examples are given to demonstrate the applicability of the proposed approach. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

7.
This paper discusses the problems of the delay‐dependent robust stability and stabilization of uncertain neutral systems with time‐varying delays. Delay‐dependent stability criteria are derived by taking the relationships between the terms in the Leibniz‐Newton formula into account. Free‐weighting matrices are employed to express these relationships, and they are easy to obtain because the new criteria are based on linear matrix inequalities. Moreover, the stability criteria are extended to the design of a stabilizing state feedback controller. Numerical examples demonstrate that these criteria are effective and are an improvement on previous ones. Copyright © 2008 John Wiley and Sons Asia Pte Ltd and Chinese Automatic Control Society  相似文献   

8.
This paper presents a general framework for analyzing stability of linear impulsive stochastic systems (LISSs). Some simple mean square stability criteria for the three types of LISSs are firstly derived by analyzing an equivalent system. By exploring the hybrid characteristics of impulsive systems, the novel quasi‐periodic composite polynomial Lyapunov function and the time‐varying discretized Lyapunov function are developed, which leads to unified dwell‐time–based criteria for mean square stability and almost sure stability of LISSs without imposing the stability condition on continuous‐ and discrete‐time dynamics. Next, based on the established stability criteria, the synthesis problem of state‐feedback controller is solved. The computational complexity and the comparison with existing results on the deterministic systems are discussed. Finally, numerical examples are provided to illustrate the usefulness of the proposed results.  相似文献   

9.
This paper studies the stability of linear systems with interval time‐varying delays. By constructing a new Lyapunov–Krasovskii functional, two delay‐derivative‐dependent stability criteria are formulated by incorporating with two different bounding techniques to estimate some integral terms appearing in the derivative of the Lyapunov–Krasovskii functional. The first stability criterion is derived by using a generalized integral inequality, and the second stability criterion is obtained by employing a reciprocally convex approach. When applying these two stability criteria to check the stability of a linear system with an interval time‐varying delay, it is shown through some numerical examples that the first stability criterion can provide a larger upper bound of the time‐varying delay than the second stability criterion. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

10.
The paper investigates the problems of stability and stabilization of Markovian jump systems with time‐varying delays and uncertain transition rates matrix. First, the stochastic scaled small‐gain theorem is introduced to analyze the stability of the Markovian jump system. Then, a new stability criterion is proposed by using a new Lyapunov‐Krasovskii functional combined with Wirtinger‐based integral inequality. The proposed stability condition is demonstrated to be less conservative than other existing results. The merit of the proposed approach lies in its reduced conservatism, which is made possible by a new precise triangle inequality and a new Lyapunov‐Krasovskii functional. Moreover, a controller design criterion is presented according to the stability criterion. Furthermore, the transition rate matrix is treated as partially known and with uncertainty, and the relevant stability and stabilization criteria are proposed. Finally, 3 numerical examples are provided to illustrate the superior result of the stability criteria and the effectiveness of the proposed controller design method.  相似文献   

11.
This paper presents several new robust stability conditions for linear discrete‐time systems with polytopic parameter uncertainties and time‐varying delay in the state. These stability criteria, derived by defining parameter‐dependent Lyapunov functions, are not only dependent on the maximum and minimum delay bounds, but also dependent on uncertain parameters in the sense that different Lyapunov functions are used for the entire uncertainty domain. It is established, theoretically, that these robust stability criteria for the nominal and constant‐delay case encompass some existing result as their special case. The delay‐dependent and parameter‐dependent nature of these results guarantees the proposed robust stability criteria to be potentially less conservative.  相似文献   

12.
This paper is concerned with the stability analysis problems of discrete‐time systems with time‐varying delays using summation inequalities. In the literature focusing on the Lyapunov‐Krasovskii approach, the Jensen integral/summation inequalities have played important roles to develop less conservative stability criteria and thus have been widely studied. Recently, the Jensen integral inequality was successfully generalized to the Bessel‐Legendre inequalities constructed with arbitrary‐order Legendre polynomials. It was also shown that general inequality contributes to the less conservatism of stability criteria. In the case of discrete‐time systems, however, the Jensen summation inequality are hardly extensible to general ones since there have still not been general discrete orthogonal polynomials applicable to the developments of summation inequalities. Motivated by such observations, this paper proposes novel discrete orthogonal polynomials and then successfully derives general summation inequalities. The resulting summation inequalities are discrete‐time counterparts of the Bessel‐Legendre inequalities but are not based on the discrete Legendre polynomials. By developing hierarchical stability criteria based on the proposed summation inequalities, the effectiveness of the proposed approaches is demonstrated via three numerical examples for the stability analysis of discrete‐time systems with time‐varying delays.  相似文献   

13.
This paper deals with the problem of the robustly absolute stability for neutral‐type Lur'e systems with mixed time‐varying delay. By combining the piecewise analysis theory with the reciprocally convex method and Wirtinger‐based inequality technology, some new delay‐dependent stability criteria are proposed via a modified Lyapunov‐Krasovskii functional (LKF) approach. The stability conditions can be solved by using standard linear matrix inequality (LMI) convex optimization solvers. The criteria are less conservative than some previous ones. Three numerical examples are presented to show the effectiveness of the proposed approach.  相似文献   

14.
In this paper, the absolute stability problem of Lur'e systems with multiple nonlinearities is investigated. Popov‐type absolute stability criteria are surveyed and classified by distinguishing the Lur'e Lyapunov function upon which the criteria are based. A modified Lur'e Lyapunov function is presented. Some necessary and sufficient conditions for the existence of the Lyapynov function to guarantee the absolute stability of Lur'e systems are derived. By these conditions, LMI‐based stability criteria are presented. The obtained criteria are expected to be less conservative than the existing ones. Finally, numerical examples are given to illustrate the advantages and effectiveness of our results. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

15.
In this paper, the stability problems of a class of switched systems with limiting average dwell time (ADT) are concerned. The common ADT is improved to a form of limit, and the limiting ADT even can be infinite. Different from previous results, in order to take full advantage of stabilizing switchings, switching‐dependent switched parameters are first used to describe the relationship of two consecutive activated switchings. Then, stability criteria of switched systems with limiting ADT are established, which are less conservative comparing with the existing results. Additionally, some stability criteria of switched systems including continuous‐time and discrete‐time cases are derived. Finally, the validity and effectiveness of our results are elucidated by numerical examples.  相似文献   

16.
This paper investigates the noise‐to‐state stability and instability criteria for random nonlinear affine systems. Firstly, some new noise‐to‐state stability theorems, which weaken the sufficient conditions in the existing stability criteria on random nonlinear systems, are given by means of the uniformly asymptotically stable function. Secondly, the noise‐to‐state instability definitions are introduced and the sufficient conditions of noise‐to‐state instability are provided based on a new established lemma and the uniformly asymptotically stable function. Finally, some examples show the feasibility of theoretical findings.  相似文献   

17.
In this paper, an improved linear matrix inequality (LMI)‐based robust delay‐dependent stability test is introduced to ensure a larger upper bound for time‐varying delays affecting the state vector of an uncertain continuous‐time system with norm‐bounded‐type uncertainties. A quasi‐full‐size Lyapunov–Krasovskii functional is chosen and free‐weighting matrix approach is employed. Less restrictive sufficient conditions are derived for robust stability of time‐varying delay systems with norm‐bounded‐type uncertainties. Moreover, the investigation of the stabilization problem with memoryless state‐feedback control is presented such that the stabilizability criteria are obtained in terms of matrix inequalities, which can be solved via utilizing a cone complementarity minimization algorithm. Finally, the problem of output feedback stabilization for square systems is also taken into consideration. The output feedback stabilizability criteria are derived in the form of linear matrix inequalities, which are convex and can be easily solved using interior point algorithms. A plenty of numerical examples are presented indicating that the proposed stability and stabilization methods effectively improve the existing results. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

18.
In this paper, several new Razumikhin‐type theorems for impulsive stochastic functional differential equations are studied by applying stochastic analysis techniques and Razumikhin stability approach. By developing a new comparison principle for stochastic version, some novel criteria of the pth moment integral input‐to‐state stability and input‐to‐state stability are derived for the related systems. The feature of the criteria shows that time‐derivatives of the Razumikhin functions are allowed to be indefinite, even unbounded, which can loosen the constraints of the existing results. Finally, some examples are given to illustrate the usefulness and significance of the theoretical results.  相似文献   

19.
Distributed algorithms for synchronization and consensus in multi‐agent networks are considered. The agents are assumed to be linear of arbitrary order, the interaction topology may switch, and the couplings are uncertain, assumed only to satisfy certain quadratic constraints. Using the Kalman‐Yakubovich‐Popov lemma and absolute stability theory techniques, consensus criteria for the networks of this type are obtained. These criteria extend a number of known results for agents with special dynamics and are close in spirit to the celebrated circle criterion for the stability of Lurie systems.  相似文献   

20.
This paper devotes to the stability of aperiodic sampled‐data systems with time‐delay control, where the delays can impose a positive effect on the stability of the systems. The systems are modeled as impulsive switched systems with fixed switching laws. A novel separation theorem is presented to determine the Schur property of a matrix product and then used to obtain a less conservative stability criterion for the impulsive switched systems with fixed switching laws. By the separation theorem and a loop‐functional approach, some new stability and stabilization criteria for aperiodic sampled‐data systems with time‐delay control are provided in terms of linear matrix inequalities. Finally, the stability and stabilization results are tested on some classical numerical examples to illustrate the efficiency of the proposed method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号