首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Relationship between the miscibility of pressure‐sensitive adhesives (PSAs) acrylic copolymer/hydrogenated rosin systems and their performance (180° peel strength, probe tack, and holding power), which was measured over a wide range of time and temperature, were investigated. The miscible range of the blend system tended to become smaller as the molecular weight of the tackifier increased. In the case of miscible blend systems, the viscoelastic properties (such as the storage modulus and the loss modulus) shifted toward higher temperature or toward lower frequency and, at the same time, the pressure‐sensitive adhesive performance shifted toward the lower rate side as the Tg of the blend increased. In the case of acrylic copolymer/hydrogenated rosin acid systems, a somewhat unusual trend was observed in the relationship among the phase diagram, Tg, and the pressure‐sensitive adhesive performance. Tg of the blend was higher than that expected from Tgs of the pure components. This trend can be due to the presence of free carboxyl group in the tackifier resin. However, the phase diagram depended on the molecular weight of the tackifier. The pressure‐sensitive adhesive performance depended on the viscoelastic properties of the bulk phase. A few systems where a single Tg could be measured, despite the fact that two phases were observed microscopically, were found. The curve of the probe tack of this system shifted toward a lower rate side as the Tg increases. However, both the curve of the peel strength and the holding power of such system did not shift along the rate axis. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 71: 651–663, 1999  相似文献   

2.
An approach to synthesizing photopatternable enzymatic degradable dextran hydrogel is presented. The glycidyl methacrylate derivatized dextran (Dex‐GMA) was first prepared by reacting dextran with glycidyl methacrylate at 45°C with grafting efficiency of 10%. The degree of substitution (DS) was confirmed by 1H‐NMR. Next, Dex‐GMA hydrogels were prepared by crosslinking in the presence of a crosslinker: N,N′‐ methylene‐bisacrylamide (NMBA), and a photoinitiator: 2,2′‐dimethoxy‐2‐phenyl acetophenone (DMPA) in dimethyl sulfoxide (DMSO) solution. Further, the Dex‐GMA hydrogels were photopatterned using liquid‐phase photopolymerization (LP3) technique. The structure size ranged from 5 mm to 300 μm and three different shapes of structures‐ ‐ —round, square, and star‐ ‐ —were demonstrated. The patterned Dex‐GMA hydrogel structures not only exhibited mechanical robustness but also biodegradability. The dextranase‐catalyzed degradation of Dex‐GMA hydrogels with different DS was investigated at 37°C. The morphology of the degraded Dex‐GMA hydrogels determined by SEM revealed the degree of enzymatic degradation due to dextranase. The Dex‐GMA hydrogel was fully degraded by dextranase with concentration of 2 U/ml in 5 days. The Dex‐GMA hydrogel also showed the ability to be readily integrated with microfluidics. POLYM. ENG. SCI., 2009. © 2009 Society of Plastics Engineers  相似文献   

3.
Hotmelt pressure sensitive adhesives (PSAs) usually contain styrenic block copolymers like styrene–isoprene–styrene (SIS), SBS, SEBS, tackifier, oil, and additives. These block copolymers individually reveal no tack. Therefore, a tackifier is a low molecular weight material with high glass transition temperature (Tg), and imparts the tacky property to PSA. The SIS block copolymer with different diblocks was blended with hydrogenated dicyclopentadiene (H‐DCPD tackifier), which has three kinds of Tg. PSA performance was evaluated by probe tack, peel strength, and shear adhesion failure temperature. PSA is a viscoelastic material, so that its performance is significantly related to the viscoelastic properties of PSAs. We tested the viscoelastic properties by dynamic mechanical analysis and the thermal properties by differential scanning calorimeter to investigate the relation between viscoelastic properties and PSA performance. © 2006 Wiley Periodicals, Inc. J Appl PolymSci 102: 2839–2846, 2006  相似文献   

4.
Low levels of functional acrylic monomers were incorporated into a core‐shell acrylic copolymer by seeded emulsion polymerization. The increase in glass transition temperature, Tg, from DSC measurement has showed that although certain amount of crosslinking reactions have occurred during the polymerization and isolation of the copolymer, the dried copolymer films could undergo further curing by UV irradiation. The structure and amount of the functional monomer, concentration of photoinitiator, and the extent of UV exposure have exerted significant influence on the Tg of the dry copolymer films. Because of the relatively low level of incorporated unsaturation, there was no significant change in FTIR during the curing of the film. Further, crosslinking of the copolymer film induced by UV irradiation has significantly increased the resistance to swelling in alkaline solution, although the gel content remained the same. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 2317–2322, 2006  相似文献   

5.
Epoxy group‐containing poly(hydroxyethyl methacrylate/glycidyl methacrylate), p(HEMA/GMA), membrane was prepared by UV initiated photopolymerization. The membrane was grafted with chitosan (CH) and some of them were chelated with Fe(III) ions. The CH grafted, p(HEMA/GMA), and Fe(III) ions incorporated p(HEMA/GMA)‐CH‐Fe(III) membranes were used for glucose oxidase (GOD) immobilization via adsorption. The maximum enzyme immobilization capacity of the p(HEMA/GMA)‐CH and p(HEMA/GMA)‐CH‐Fe(III) membranes were 0.89 and 1.36 mg/mL, respectively. The optimal pH value for the immobilized GOD preparations is found to have shifted 0.5 units to more acidic pH 5.0. Optimum temperature for both immobilized preparations was 10°C higher than that of the free enzyme and was significantly broader at higher temperatures. The apparent Km values were found to be 6.9 and 5.8 mM for the adsorbed GOD on p(HEMA/GMA)‐CH and p(HEMA/GMA)‐CH‐Fe(III) membranes, respectively. In addition, all the membranes surfaces were characterized by contact angle measurements. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 103: 3084–3093, 2007  相似文献   

6.
2,5‐ Dichlorophenyl acrylate (DPA)‐co‐glycidyl methacrylate (GMA) polymers having five different compositions were synthesized in 1,4‐dioxane using benzoyl peroxide as a free‐radical initiator at 70 ± 0.5°C. Using 1H‐NMR spectroscopy, the composition of the two monomers in the copolymers was calculated by comparing the integral values of the aromatic and aliphatic proton peaks. The reactivity ratios were calculated by Fineman–Ross (r1 = 0.31 and r2 = 1.08), Kelen–Tudos (r1 = 0.40 and r2 = 1.15), and extended Kelen–Tudos (r1 = 0.39 and r2 = 1.16) methods. The nonlinear error‐in‐variables model was used to compare the reactivity ratios. The copolymers were characterized by 1H and proton decoupled 13C‐NMR spectroscopes. Gel permeation chromatography was performed for estimating the Mw and Mn and Mw/Mn of the poly(DPA) and copolymers (DPA‐co‐GMA: 09 : 91 and 50 : 50). Thermal stability of the homo‐ and copolymers was estimated using TGA [poly(DPA) > DPA‐co‐GMA (50 : 50) > DPA‐co‐GMA (09:91)], while DSC was utilized for determining the glass transition temperature. Tg increased with increased DPA content in the copolymer. The 50 : 50 mol % copolymer was chosen for curing with diethanolamine in chloroform. The cured resins were tested for the adhesive properties on leather at different temperatures (50, 90, 100, and 110°C). The resin cured at 50 °C exhibited a maximum peel strength of 1.6 N/mm, revealing a good adhesive behavior. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 99: 1167–1174, 2006  相似文献   

7.
Glycidyl methacrylate functionalized acrylonitrile–butadiene–styrene (ABS‐g‐GMA) particles were prepared and used to toughen polylactide (PLA). The characteristic absorption at 1728 cm?1 of the Fourier transform infrared spectra indicated that glycidyl methacrylate (GMA) was grafted onto the polybutadiene phase of acrylonitrile–butadiene–styrene (ABS). Chemical reactions analysis indicated that compatibilization and crosslinking reactions took place simultaneously between the epoxy groups of ABS‐g‐GMA and the end carboxyl or hydroxyl groups of PLA and that the increase of GMA content improved the reaction degree. Scanning electron microscopy results showed that 1 wt % GMA was sufficient to satisfy the compatibilization and that ABS‐g‐GMA particles with 1 wt % GMA dispersed in PLA uniformly. A further increase of GMA content induced the agglomeration of ABS‐g‐GMA particles because of crosslinking reactions. Dynamic mechanical analysis testing showed that the miscibility between PLA and ABS improved with the introduction of GMA onto ABS particles because of compatibilization reactions. The storage modulus decreased for the PLA blends with increasing GMA content. The decrease in the storage modulus was due to the chemical reactions in the PLA/ABS‐g‐GMA blends, which improved the viscosity and decreased the crystallization of PLA. A notched impact strength of 540 J/m was achieved for the PLA/ABS‐g‐GMA blend with 1 wt % GMA, which was 27 times than the impact strength of pure PLA, and a further increase in the GMA content in the ABS‐g‐GMA particles was not beneficial to the toughness improvement. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

8.
The photosensitive properties of a novel oligomer, di (N,N‐diacrylolyl)‐α, ω‐diaminopolysiloxane (ANS) with tertiary amine groups and acryloyl groups in its molecular structure were investigated using FTIR and gel yield method. It was noted that the ANS system showed a notable photosensitive property and its photosensitivity in air could be up to16.3 mJ/cm2. The UV‐curing behavior of the ANS was studied by electron spin resonance (ESR). The results showed that amino‐alkyl radicals can be formed by excited BP abstracting hydrogen at a‐carbon bonded with nitrogen in the ANS molecule under UV irradiation, which can mitigate the oxygen inhibition in radical polymerization. It is proven that tertiary amine groups introduced into ANS could boost photosensitivity of the photopolymerization system. The oligomer ANS may find application in photopolymerization to improve the properties of UV‐curing coating materials. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

9.
Pressure sensitive adhesives (PSAs) with higher thermal stability were synthesized by crosslinking acrylic copolymer with naphthyl curing agent. The acrylic copolymer was synthesized for a base resin of PSAs by solution polymerization of 2-ethylhexyl acrylate, ethyl acrylate, and acrylic acid with N,N′-azobisisobutyronitrile as an initiator. The acrylic copolymer was further modified with glycidyl methacrylate to have the vinyl groups available for UV curing. Thermal stability of acrylic PSAs was improved noticeably with increasing naphthyl curing agent content and UV dose mainly due to the extensive formation of crosslinked structure in the polymer matrix. Although the peel strength decreased with UV curing of acrylic polymer, a proper balance between the thermal stability and the adhesion performance of PSAs was obtained by controlling the UV curing with naphthyl curing agent content and UV dose.  相似文献   

10.
Glycidyl methacrylate (GMA) and methyl methacrylate (MMA) copolymers were synthesized by atom transfer radical polymerization (ATRP). The effect of different molar fractions of GMA, ranging from 0.28 to 1.0, on the polymer polydispersity index (weight‐average molecular weight/number‐average molecular weight) as the indicator of a controlled process was investigated at 70°C, with ethyl 2‐bromoisobutyrate as an initiator and 4,4′‐dinonyl‐2,2′‐bipyridyne (dNbpy)/CuBr as a catalyst system in anisole. The monomer reactivity ratios (r values) were obtained by the application of the conventional linearization Fineman–Ross method (rGMA = 1.24 ± 0.02 and rMMA = 0.85 ± 0.03) and by the Mayo–Lewis method (rGMA = 1.19 ± 0.04 and rMMA = 0.86 ± 0.03). The molecular weights and polydispersities of the copolymers exhibited a linear increase with GMA content. The copolymer compositions were determined by 1H‐NMR and showed a domination of syndiotactic structures. The glass‐transition temperatures (Tg) of the copolymers analyzed by differential scanning calorimetry (DSC) decreased in the range 105–65°C with increasing GMA units. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

11.
Poly(2‐hydroxyethyl methacrylate‐co‐glycidyl methacrylate) p(HEMA–GMA) membrane was prepared by UV‐initiated photopolymerisation of 2‐hydroxyethyl methacrylate (HEMA) and glycidyl methacrylate (GMA) in the presence of an initiator, azobisisobutyronitrile (AIBN). Cholesterol oxidase was immobilised directly on the membrane by forming covalent bonds between its amino groups and the epoxide groups of the membrane. An average of 53 µg of enzyme was immobilised per cm2 of membrane, and the bound enzyme retained about 67% of its initial activity. Immobilisation improved the pH stability of the enzyme as well as its temperature stability. The optimum temperature was 5 °C higher than that of the free enzyme and was significantly broader. The thermal inactivation rate constants for free and immobilised preparations at 70 °C were calculated as ki (free) 1.06 × 10?1 min?1 and ki (imm) 2.68 × 10?2 min?1, respectively. The immobilised enzyme activity was found to be quite stable in the repeated experiments. © 2002 Society of Chemical Industry  相似文献   

12.
The effects of UV irradiation on iron(III)chloride doped poly(vinyl alcohol) (PVA) films, using a high molar mass polymer, have been studied. It has been found that the polymer is oxidized and crosslinked during UV irradiation. UV/VIS spectra reveal an exponential loss of absorption at λ = 360 nm, and the refractive index of the PVA:FeCl3 films decreases significantly during UV irradiation (ΔnD = ?0.09). The effects of crosslinking have been studied using the sol–gel technique, which revealed high gel contents due to doping and UV‐exposure. Photolithographic patterning of doped PVA films using a medium‐pressure mercury‐vapor UV source has been carried out, leading to good contrast behavior before and after development in aqueous media. A photobleaching effect was observed, therefore the curing of thicker films is feasible. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

13.
Poly(butyl acrylate‐vinyl acetate‐acrylic acid) based acrylic pressure sensitive adhesives (PSAs) were synthesized by solution polymerization for the fabrication of high performance pressure sensitive adhesive tapes. The synthesized PSAs have high shear strength and can be peeled off substrate without residues on the substrate at temperature up to 150°C. The PSAs synthesized in the present work are single‐component crosslinked and they can be used directly once synthesized, which is convenient for real applications compared to commercial multi‐component adhesives. The results demonstrated that the viscosity of the PSAs remained stable during prolonged storage. The effects of the preparation conditions such as initiator concentration, cross‐linker amount, organosiloxane monomer amount and tackifier resin on the polymer properties, such as glass transition temperature (Tg), molecular weight (Mw), surface energy and shear modulus, were studied, and the dependence of the adhesive properties on the polymer properties were also investigated. Crosslinking reactions showed a great improvement in the shear strength at high temperature. The addition of tackifier resin made peel strength increase compared to original PSAs because of the improvement of the adhesion strength. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40086.  相似文献   

14.
The butyl acrylate (BA)/methyl methacrylate (MMA), and glycidyl methacrylate (GMA) composite copolymer latex was synthesized by seeded emulsion polymerization technique taking poly(methyl methacrylate) (PMMA) latex as the seed. Four series of experiments were carried out by varying the ratio of BA : MMA (w/w) (i.e. 3.1 : 1, 2.3 : 1, 1.8 : 1, and 1.5 : 1) and in each series GMA content was varied from 1 to 5% (w/w). The structural properties of the copolymer were analyzed by FTIR, 1H‐, and 13C‐NMR. Morphological characterization was carried out using transmission electron microscopy (TEM). In all the experiments, monomer conversion was ~99% and final copolymer composition was similar to that of feed composition. The incorporation of GMA into the copolymer chain was confirmed by 13C‐NMR. The glass transition temperature (Tg) of the copolymer latex obtained from the differential scanning calorimetry (DSC) curve was comparable to the values calculated theoretically. With increase in GMA content, particles having core‐shell morphology were obtained, and there was a decrease in the particle size as we go from 2–5% (w/w) of GMA. The adhesive strength of the latexes was found to be dependent on the monomer composition. With increase in BA : MMA ratio, the tackiness of the film increased while with its decrease the hardness of the film increased. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

15.
Two multimethacrylates having three methacrylate groups (BPA‐3M) and four methacrylate groups (BPA‐4M) have been prepared by reacting hydroxyl groups of 2,2‐bis[4‐(2′‐hydroxy‐3′‐methacryloyloxypropoxy)phenyl]propane (Bis‐GMA) with methacryloyl chloride. BPA‐3M and BPA‐4M have much lower viscosities than the starting Bis‐GMA, because they have only one or no hydroxyl group. Photopolymerizations of the multifunctional methacrylates were conducted by exposure to visible light using camphorquinone and 2‐(N,N‐dimethylamino)ethyl methacrylate as a photoinitiating system. High conversions >50% resulted from photopolymerization of BPA‐3M, whereas Bis‐GMA showed lower conversions under the same condition, implying better mechanical properties for the composite resins made from BPA‐3M. BPA‐4M showed much lower conversions in the photopolymerization condition. Water sorption of the photocured composite of BPA‐3M containing 50 wt % of inorganic fillers was found to be 0.15%, which is only one‐tenth of the commercial Bis‐GMA composite. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 71: 2033–2037, 1999  相似文献   

16.
The gelation and crosslinking features of poly(ethylene glycol) (PEG) hydrogels were scrutinized through the UV polymerization processes of poly(ethylene glycol) methacrylate (PEGMA) and poly(ethylene glycol) dimethacrylate (PEGDMA) mixtures. The real‐time evolutions of the elastic moduli of the prepolymerized mixtures with different crosslinking ratios of PEGMA and PEGDMA and the photoinitiator concentrations were measured during photopolymerization. The rheological properties were compared with other properties of the PEG hydrogels, including the relative changes in the C?C amounts in the mixtures before and after UV irradiation, water swelling ratio, gel fraction, mesh size, and mechanical hardness. As the portion of PEGDMA as a crosslinker increased, the final elastic modulus and gel fraction increased, whereas the swelling ratio and scratch penetration depth at the hydrogel film surface decreased because of the formation of compact networks inside the hydrogels. These results indicate that there was a good correlation between the rheological analysis for predicting the crosslinking transition during photopolymerization and the macroscopic properties of the crosslinked hydrogels. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41939.  相似文献   

17.
Eight different silicon‐containing (meth)acrylate monomers are synthesized by the substitution reaction of chlorosiloxanes with 2‐hydroxyethyl methacrylate or 2‐hydroxyethyl acrylate. Their molecular structures are confirmed by IR, 1H‐NMR, and 13C‐NMR spectroscopic analyses. The effects of silicon content on the UV‐curing behavior, physical, surface, and thermal properties are investigated. The UV‐curing behavior is analyzed by photo differential scanning calorimetry. The surface free energy of the UV‐cured film is calculated from contact angles measured using the Lewis acid‐base three liquids method. The silicon‐containing (meth)acrylate monomers perform much better than traditional (meth)acrylate monomers on UV‐curing. The silicon‐containing monomers have higher final conversions and fast UV‐curing rates in photopolymerization. The surface free energy decreases with increasing silicon content, because silicon in the soft segment is transferred to the surface, producing a UV‐cured film; this is confirmed by X‐ray photoelectron spectroscopy measurements. All these advantageous properties enable these synthetic silicon‐containing monomers to perform better in applications. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

18.
The effects of compatibility of tackifier with polymer matrix and mixing weight ratio of triblock/diblock copolymers as the matrix on the adhesion property and phase structure of tackifier‐added polystryrene triblock/diblock copolymer blends were investigated. For this purpose, polystyrene‐block‐polyisoprene‐block‐polystyrene triblock and polystyrene‐block‐polyisoprene diblock copolymers were used and the diblock weight ratio in the blend was varied from 0 to 1. Spherical polystyrene domains with a mean size of about 20 nm were dispersed in the polyisoprene (PI) continuous phase. In the case of the hydrogenated cycloaliphatic resin as tackifier having a good compatibility with PI and a poor compatibility with polystyrene, the peel strength increased with an increase of the tackifier content, and the degree of increase became significant above 40 wt % of tackifier. It was found that the nanometer‐sized agglomerates of tackifier in the PI matrix were formed and the distance between the nearest neighbors of agglomerates was about 15 nm from SAXS measurement. The peel strength increased with an increase of the nanometer‐sized agglomerates of tackifier from TEM observation. On the other hand, in the case of the rosin phenolic resin as tackifier having a good compatibility with both polystyrene and PI, the peel strength increased effectively at the lower tackifier content, while no significant increase at higher tackifier content was observed. The agglomerates of tackifier were never confirmed in this system. The higher peel strength was obtained at the diblock weight ratio in the blend of 0.5–0.7 for both tackifier‐added systems. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

19.
A series of the copolymer, poly(styrene‐random‐glycidyl methacrylate) (P(St‐r‐GMA)), is synthesized by free radical polymerization, and characterized by 1H NMR spectroscopy and gel permeation chromatography. The various substrates are then modified by P(St‐r‐GMA) under ultraviolet (UV) irradiation. Subsequently, the poly(2‐methyl‐2‐oxazoline) (PMOXA) based coatings are prepared by anchoring amino‐terminated PMOXA onto the P(St‐r‐GMA) modified surfaces through the reaction between the amino group of PMOXA and epoxy group of P(St‐r‐GMA). The results of ellipsometry, X‐ray photoelectron spectroscopy, atomic force microscopy, and water contact angle reveal that PMOXA‐based coatings can be prepared successfully on the substrates through UV‐crosslinked P(St‐r‐GMA) as anchoring coatings. Besides, the PMOXA‐based coatings display not only a superior antifouling property but long‐term stability as well. Furthermore, the location of the coating formed on the substrate can be well controlled through selecting the site of UV irradiation, which can be utilized for the selectivity of protein adsorption (or resistance) on special devices.  相似文献   

20.
To improve the thermal stability of general acrylic pressure-sensitive adhesives (PSAs), polydimethylsiloxane (PDMS) was used and UV curing was employed. Silicone urethane methacrylate (SiUMA) was synthesized and introduced into acrylic PSAs for a semi-interpenetrating polymer network structure. The structure of the SiUMA was investigated through C NMR, H NMR, and FT-IR. The kinetics and behaviors of SiUMA (S1) were found by adding photoinitiators (PI) of 0.5, 1.0, 5.0, and 10?phr in a binder, which were examined using the photo-DSC (pDSC). After setting PI as 5.0?phr in a binder and UV intensity as 1000?mJ/cm2, the SiUMA, which was prepared by a radical polymerization, was added to acrylic PSA to 20, 40, 60, and 80% composition, and its kinetics and behaviors were analyzed by pDSC. Finally, the peel strength was checked to evaluate adhesion performance of the acrylic PSAs. The reaction rate was increased with increasing amounts of S1 and PI. Peel strength was dropped sharply with increasing crosslinking density.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号