首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 11 毫秒
1.
As part of a national pool funded study 208 on pavement subgrade performance, 12 full-scale test sections (four soil types and three moisture contents) were constructed and tested under the heavy vehicle simulator (HVS) loading. This paper presents the HVS results on two of the four soils tested: AASHTO Class A-2-4 and A-4 soils, respectively. From the results, it was found that the pavement subgrade performance is a function of soil type, moisture content, and applied stress condition. Additionally, this paper also evaluated the current mechanistic-empirical pavement design guide (MEPDG) subgrade rutting (permanent strain) model through comparing with the actual measurements under the HVS loading. It was found that the MEPDG subgrade permanent strain model needs further improvement, and that a single performance model may not be universally applicable to different subgrade soil types. Consequently, a new permanent strain model for each soil type was developed in this paper, based on the HVS results, and that yielded better predictions. With further validation and field calibration, the proposed models offer promising potential to accurately predict rutting behavior of these two soils.  相似文献   

2.
Testing and Modeling Two Rockfill Materials   总被引:4,自引:0,他引:4  
Modeled rockfill materials consisting of rounded and angular particles obtained from two dam sites are subjected to drained triaxial tests using large size specimens. An elastoplastic constitutive model based on the disturbed state concept is adopted to characterize the behavior of the modeled rockfill materials. The material parameters for the two rockfill materials are determined from the experimental results. The variation of the material parameters with respect to the size of the particles for the rockfill material with the rounded particle is, in general, opposite to that for the rockfill material with the angular particles. The model is shown to provide satisfactory prediction of the behavior of the rockfill materials tested. Material parameters are predicted for prototype size of rockfill materials.  相似文献   

3.
Monotonic and Cyclic Behavior of Two Calcareous Soils of Different Origins   总被引:1,自引:0,他引:1  
The behavior of two calcareous soils—Goodwyn (GW) and Ledge Point (LP)—is studied through a series of monotonic and cyclic triaxial tests. These two soils are selected because they represent two extreme formation conditions in terms of their depositional environments, physical characteristics, and grain strength. The experimental investigation included isotropic compression tests to high stress levels, undrained monotonic shearing tests, and undrained cyclic shearing tests under one-way and two-way loading conditions. Tests were performed on samples with different initial conditions. The experimental results show that, although the overall qualitative stress-strain behavior of both GW and LP soils is similar to that of other silicious soils, significant quantitative differences are observed between the two soils and also between calcareous and silicious soils, especially in terms of volumetric reduction during compression, monotonic and cyclic shear strength, and the strain required to mobilize the strength. This paper explores the mechanical behavior of the two calcareous soils and highlights the similarities and differences between their behavior and also between calcareous and silicious soils.  相似文献   

4.
The accumulation of permanent deformations in asphalt concrete under repeated loading, a phenomenon of great practical importance, is studied in detail and a new multidimensional nonlinear hyperelastic-nonassociative plastic model is proposed. The equations of the model are solved by using the predictor–corrector algorithm. The model’s results are compared to actual experimental data and the comparison is very favorable. A remarkable result is that the model parameters obtained from one stress level predict correctly the results for another stress level.  相似文献   

5.
The nonhomogeneous behavior of structured soils during triaxial tests has been studied using a finite element model based on the Structured Cam Clay constitutive model with Biot-type consolidation. The effect of inhomogeneities caused by the end restraint is studied by simulating drained triaxial tests for samples with a height to diameter ratio of 2. It was discovered that with the increase in degree of soil structure with respect to the same soil at the reconstituted state, the inhomogeineities caused by the end restraint will increase. By loading the sample at different strain rates and assuming different hydraulic boundary conditions, inhomogeneities caused by partial drainage were investigated. It was found that if drainage is allowed from all faces of the specimen, fully drained tests can be carried out at strain rates about ten times higher than those required when the drainage is allowed only in the vertical direction at the top and bottom of the specimen, confirming the findings of previous studies. Both end restraint and partial drainage can cause bulging of the triaxial specimen around mid-height. Inhomogeneities due to partial drainage influence the stress–strain behavior during destructuring, a characteristic feature of a structured soil. With an increase in the strain rate, the change in voids ratio during destructuration reduces, but, in contrast, the mean effective stress at which destructuration commences was found to increase. It is shown that the stress–strain behavior of the soil calculated for a triaxial specimen with inhomogeneities, based on global measurements of the triaxial response, does not represent the true constitutive behavior of the soil inside the test specimen. For most soils analyzed, the deviatoric stress based on the global measurements is about 25% less than that for the soil inside the test specimen, when the applied axial strain is about 30%. Therefore it can be concluded that the conventional global measurements of the sample response may not accurately reflect the true stress–strain behavior of a structured soil. This finding has major implications for the interpretation of laboratory triaxial tests on structured soils.  相似文献   

6.
The mechanism controlling the cyclic shear strength of cemented calcareous soils was investigated based on the results obtained from monotonic and cyclic triaxial tests on two different types of calcareous soil. Undrained cyclic triaxial tests performed on artificially cemented calcareous soils with different loading combinations showed that the effective stress path moved towards or away from the origin, due to the generation or dissipation of pore pressure with progressive cycles. Previous investigations have shown that the Peak Strength Envelope or the State Boundary Surface or the Critical State Line forms a boundary beyond which effective stress paths during cyclic loading cannot exist. However, in this study it was observed that the maximum stress ratio (ηmax) obtained from monotonic tests defined the boundary for the cyclic tests. Based on the information obtained from this study, an approach for evaluating the cyclic shear strength is proposed. It was observed that the modified normalized cyclic shear strength had a strong linear relationship with the logarithm of the number of cyclic to failure irrespective of confining pressure, type of consolidation and stress reversal.  相似文献   

7.
Conventionally, the resilient modulus test is conducted in the laboratory under different moisture content in which matric suction is unknown during the test. To investigate the influence of the matric suction on the resilient modulus, this study integrated the suction-controlled testing system and developed a modified testing procedure for the resilient modulus test of unsaturated subgrade soils. Based on the axis-translation technique, two cohesive soils were tested to investigate the effect of matric suction on resilient modulus. In the modified testing procedure, in order to fulfill the equilibrium in matric suction, the number of load cycles at each loading sequence of the resilient modulus test (AASHTO T 292-91) needs to be increased significantly. Experimental data indicate that matric suctions measured in the specimen after consolidation and resilient modulus tests are consistent with the matric suctions deduced from the soil-water characteristic curve corresponding to the same moisture content. In general, the resilient modulus obtained by the suction-controlled resilient modulus test appears to be reasonable. The trends of resilient modulus obtained by the suction-controlled resilient modulus test are consistent with those obtained by the conventional resilient modulus test. However, the suction-controlled resilient modulus test provides better insights that can help in interpreting the test results.  相似文献   

8.
Anisotropic Elastoplastic Bounding Surface Model for Cohesive Soils   总被引:6,自引:0,他引:6  
The initial stresses existing in the natural ground are anisotropic in the sense that the vertical stress is typically larger than the lateral stresses. The construction activities, such as embankments and excavation, induce anisotropy in the stress system. The stress-deformation behavior and excess pore water pressure response of soils are affected by the inherent and induced stress anisotropy. This paper presents an improved soil model based on the anisotropic critical state theory and bounding surface plasticity. The anisotropic critical state theory of Dafalias was extended into three-dimensional stress space. In addition to the isotropic hardening rule, rotational and distortional hardening rules were incorporated into the bounding surface formulation with an associated flow rule. The projection center that is used to map the actual stress point to the imaginary stress point was specified along the K0 line instead of the hydrostatic line or at the origin of the stress space. A simplified form of plastic modulus was used and the proposed model requires a total of 12 material parameters, the same number as that of the single-ellipse time-independent version of the Kaliakin–Dafalias model. The model was validated against the undrained isotropic and anisotropic triaxial test results under compression and extension shearing modes for Kaolin Clay, San Francisco Bay Mud, and Boston Blue Clay. The effects of stress anisotropy and overconsolidation were well captured by the model. The time effect was not included in the formulations presented in this paper.  相似文献   

9.
Artificial neural network (ANN) models are developed in this study to correlate resilient modulus with routine properties of subgrade soils and state of stress for pavement design application. A database is developed containing grain size distribution, Atterberg limits, standard Proctor, unconfined compression, and resilient modulus results for 97 soils from 16 different counties in Oklahoma. Of these, 63 soils (development data set) are used in training, and the remaining 34 soils (evaluation data set) from two different counties are used in the evaluation of the developed models. A commercial software, STATISTICA 7.1, is used to develop four different feedforward-type ANN models: linear network, general regression neural network, radial basis function network, and multilayer perceptrons network (MLPN). In each of these models, the input layer consists of seven nodes, one node for each of the independent variables, namely moisture content (w), dry density (γd), plasticity index (PI), percent passing sieve No. 200 (P200), unconfined compressive strength (Uc), deviatoric stress (σd), and bulk stress (θ). The output layer consists of only one node—resilient modulus (MR). After the architecture is set, the development data set is fed into the model for training. The strengths and weaknesses of the developed models are examined by comparing the predicted MR values with the experimental values with respect to the R2 values. Overall, the MLPN model with two hidden layers was found to be the best model for the present development and evaluation data sets. This model as well as the other models could be refined using an enriched database.  相似文献   

10.
This paper presents the results of a systematic well designed experimental investigation carried out to study the engineering properties of the soft Bangkok clay heated up to 90°C from room temperature (25°C). Details of modified oedometer and triaxial test apparatus that can handle temperatures up to 100°C are also presented. In the range of temperatures investigated, soft Bangkok clay exhibited temperature induced volume changes that depend mainly on the stress history, reduction in the conventional elastic zone, stiffening, and increased hydraulic permeability with increasing temperature as well as apparent overconsolidation state after subjecting the normally consolidated specimen to heating/cooling cycle. The results of this study provide additional data that can enhance the understanding of the thermohydromechanical behavior concepts of saturated clays.  相似文献   

11.
A constitutive model has been developed to capture the behavior of cross-anisotropic frictional materials. The elastoplastic, single hardening model for isotropic materials serves as the basic framework. Based on the experimental results of cross-anisotropic sands in isotropic compression tests, the principal stress coordinate system is rotated such that the model operates isotropically within the rotated framework. Experimental plastic work contours on the octahedral plane are plotted for a series of true triaxial tests on dense Santa Monica Beach sand to study the effects of cross anisotropy on the evolution of yield surfaces. The amount of rotation of the yield and plastic potential surfaces decreases to zero (isotropic state) with loading. The model is constructed for cases where the principal stress and material symmetry axes are collinear and no significant rotation of principal stresses occur. The model incorporates fourteen parameters that can be determined from simple experiments, such as isotropic compression, drained triaxial compression, and triaxial extension tests. A series of true triaxial and isotropic compression tests on dense Santa Monica Beach sand are used as a basis for verification of the capabilities of the proposed model.  相似文献   

12.
This paper presents a comparison study of the experimental results from the falling weight deflectometer (FWD) test, field rigid plate bearing load test, and laboratory resilient modulus test on granular subgrade materials in flexible pavements. The results showed that the average laboratory resilient moduli at optimum compacted conditions were 1.1 times higher than the average laboratory determined resilient moduli at in situ conditions. The FWD back-calculated moduli were about 1.6 times higher than the laboratory resilient moduli for the granular materials. The average laboratory determined maximum dry density was slightly higher than the average field measured in situ dry density. A hyperbolic model was proposed to represent the relationship of the load-deformation curve obtained from the field plate bearing load test. No significant relationship was found between the laboratory resilient modulus and the modulus of elasticity from the field plate bearing tests.  相似文献   

13.
The treatment of soils with cement is an attractive technique when the project requires improvement of the local soil for the construction of subgrades for rail tracks, as a support layer for shallow foundations and to prevent sand liquefaction. As reported by Consoli et al. in 2007, a unique dosage methodology has been established based on rational criteria where the voids/cement ratio plays a fundamental role in the assessment of the target unconfined compressive strength. The present study broadened the research carried out by Consoli et al. in 2007 through quantifying quantifies the influence of voids/cement ratio on the initial shear modulus (G0) and Mohr-Coulomb effective strength parameters (c′,?′) of an artificially cemented sand. A number of unconfined compression and triaxial compression tests with bender elements measurements were carried out. It was shown that the void/cement ratio defined as the ratio between the volume of voids of the compacted mixture and the volume of cement is an appropriate parameter to assess both initial stiffness and effective strength of the sand-cement mixture studied.  相似文献   

14.
This paper presents the results of the influence of frequency on the permanent deformation and degradation behavior of ballast during cyclic loading. The behavior of ballast under numerous cycles was investigated through a series of large-scale cyclic triaxial tests. The tests were conducted at frequencies ranging from 10–40 Hz, which is equivalent to a train traveling from 73 km/h to 291 km/h over standard gauge tracks in Australia. The results showed that permanent deformation and degradation of ballast increased with the frequency of loading and number of cycles. Much of breakage occurs during the initial cycle; however, there exists a frequency zone of 20?Hz ? f ? 30?Hz where cyclic densification takes place without much additional breakage. An empirical relationship among axial strain, frequency and number of cycles has been proposed based on the experimental data. In addition, discrete-element method (DEM) simulations were carried out using PFC2D on an assembly of irregular shaped particles. A novel approach was used to model a two-dimensional (2D) projection of real ballast particles. Clusters of bonded circular particles were used to model a 2D projection of angular ballast particles. Degradation of the bonds within a cluster was considered to represent particle breakage. The results of DEM simulations captured the ballast behavior under cyclic loading in accordance with the experimental observations. Moreover, the evolution of micromechanical parameters such as a distribution of the contact force and bond force developed during cyclic loading was presented to explain the mechanism of particle breakage. It has been revealed that particle breakage is mainly due to the tensile stress developed during cyclic loading and is located mainly in the direction of the movement of ballast particles.  相似文献   

15.
The shearing behavior of saturated silty soils has been examined extensively by performing undrained and partially drained (the upper drainage valve of the shear box was open during shearing) ring-shear tests on mixtures of a sandy silt with different loess contents. By performing tests at different initial void ratios, the shear behavior of these silty soils at different initial void ratios is presented and discussed. Undrained-shear-test results showed that the liquefaction phenomena in ring-shear tests were limited within the shear zone; for a given void ratio or interfine void ratio, both the peak and steady-state shear strengths decreased with increase of loess content. The partially drained shear tests revealed that a great reduction in the shear strength could result after the shear failure, due to the buildup of excess pore-water pressure within the shear zone; the magnitude of reduction in shear strength after failure was affected by the initial void ratio, the shear speed after failure, as well as the loess content in the sample. For a given void ratio or interfine void ratio, with increase of loess content, the drained peak shear strength became smaller, while the brittleness index became greater. It was also found that due to localized shearing, the permeability of the soil within the shear box after drained shearing could be three orders of magnitude smaller than before shearing.  相似文献   

16.
Two commonly encountered saprolitic soils in Hong Kong, weathered volcanic tuff (WT) and weathered granite (WG), were studied using high-quality intact samples. The intact samples exhibited quasi-preconsolidation pressure or yield stress under isotropic compression due to their bonded structures, but the yield was progressive and not abrupt. As the stress increased, significant volumetric changes were measured. These changes resembled clay-type behavior. The soils also exhibited anisotropic deformation under isotropic loading and unloading, which was associated with the features of their parent rocks. During the drained tests, shearing at the in situ stress-state produced peak strength and volumetric dilation. Undrained shearing showed complicated stress paths and dilatancy behavior in these soils. Phase transformation states and dilative shear failure were readily seen, which resembles typical sand-type behavior. Distinct shear band(s) appeared in the WT specimens during shearing, whereas a bulging type of failure appeared in the WG specimens. The soils ultimately approached the corresponding state guided by a unique critical state line, regardless of their complex initial states in relation to the bonded structure and drainage conditions.  相似文献   

17.
Key Parameters for Strength Control of Artificially Cemented Soils   总被引:10,自引:0,他引:10  
Often, the use of traditional techniques in geotechnical engineering faces obstacles of economical and environmental nature. The addition of cement becomes an attractive technique when the project requires improvement of the local soil. The treatment of soils with cement finds application, for instance, in the construction of pavement base layers, in slope protection of earth dams, and as a support layer for shallow foundations. However, there are no dosage methodologies based on rational criteria as exist in the case of the concrete technology, where the water/cement ratio plays a fundamental role in the assessment of the target strength. This study therefore aims to quantify the influence of the amount of cement, the porosity and the moisture content on the strength of a sandy soil artificially cemented, as well as to evaluate the use of a water/cement ratio and a voids/cement ratio to assess its unconfined compression strength. A number of unconfined compression tests, triaxial compression tests, and measurements of matric suction were carried out. The results show that the unconfined compression strength increased linearly with the increase in the cement content and exponentially with the reduction in porosity of the compacted mixture. The change in moisture content also has a marked effect on the unconfined compression strength of mixtures compacted at the same dry density. It was shown that, for the soil-cement mixture in an unsaturated state (which is usual for compacted fills), the water/cement ratio is not a good parameter for the assessment of unconfined compression strength. In contrast, the voids/cement ratio, defined as the ratio between the porosity of the compacted mixture and the volumetric cement content, is demonstrated to be the most appropriate parameter to assess the unconfined compression strength of the soil-cement mixture studied.  相似文献   

18.
It is well established that critical state soil mechanics provides a useful theoretical framework for constitutive modeling of soil. Most of the critical state models, including the popular modified Cam clay (MCC) model, predict soil behavior in the subcritical region fairly well. However, the predictions for heavily overconsolidated soils, in the supercritical region, are not so satisfactory. Furthermore, the critical state models were developed from triaxial test data and extension of these models into three-dimensional (3D) stress space has not been investigated thoroughly. In the present work, experiments were carried out to obtain stress–strain behavior of overconsolidated soil in triaxial compression, extension, and plane strain conditions. A novel biaxial device has been developed to conduct the plane strain tests. The experimental results were used to formulate Hvorslev–MCC model which has MCC features in the subcritical region and Hvorslev surface in the supercritical region. The model was generalized to 3D stress space using the Mohr–Coulomb failure criterion. A comparison of the model predictions with test results has indicated that the Hvorslev–MCC model performs fairly well up to the peak supercritical point, during which deformations are fairly uniform and the specimens remain reasonably intact. Limitations of this simple model in predicting postpeak localization are also discussed. The model’s predictions for volumetric response in different shear modes seem to agree reasonably well with test results.  相似文献   

19.
During recent decades, a considerable amount of research has been devoted to the resilient properties of unbound road materials. However, the severe effects of cold region climates on resilient behavior have been less exhaustibly investigated. In this study, the results from extensive resilient modulus laboratory tests during full freeze-thaw cycling are presented. Various coarse and fine-grained subgrade soils were tested at selected temperatures from room temperature down to ?10°C and back to room temperature. The soils are frozen and thawed inside a triaxial cell, thus eliminating external disturbances due to handling. The results indicate that all the soils exhibited a substantially reduced resilient modulus after the freeze-thaw cycle. A significant hysteresis for the clay soil in warming and cooling was also observed. This paper presents equations for different conditions. The equations may be used for selecting the appropriate resilient modulus value in current and future evaluation and design methods.  相似文献   

20.
The comfort and safety of a moving train is largely determined by the dynamic response of the railway track and its foundation (i.e., subgrade). To study the dynamic stability of a silt subgrade subjected to train traffic loading with increasing speed, cyclic triaxial tests were conducted for compacted silt specimens with varying dry density, water content, dynamic stress, and load frequency. The laboratory test results and field measurements of the subgrade dynamic stress under train loading indicate that with increasing train speed, an increase in dynamic stress and load frequency does not impair the stability of the silt subgrade, provided the subgrade is in sound physical condition (i.e., its natural water content approximates the optimal water content) and the relative compaction is at least 90%. However, if the relative compaction is 85%, the subgrade is stable only at a dynamic stress level that is below 70 kPa, and the subgrade may suffer shear failure at a higher dynamic stress level. The elastic deformation of the subgrade linearly increases with an increase in train speed. However, if the degree of saturation of the silt subgrade increases, the thresholds of both the dynamic stress and resilient modulus decrease markedly, accompanied by sharp increases in elastic deformation and cumulative deformation and can even result in the shear failure of the subgrade. These conditions are unfavorable for the high speeds and stability needed for trains; therefore, train speeds should be limited in wet conditions to reduce subgrade dynamic stress and load frequency.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号