首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper presents the results of an experimental study of flow around cylindrical objects in an open channel. Cylindrical objects of equal diameter and four heights were tested under similar flow conditions producing four different levels of submergence, including a surface piercing bridge-pier-like cylinder. Different flow elements and their locations were identified using a set of flow visualization tests. Observations made from the flow visualization tests were then verified by measurements of bed-shear stress and deflected flow velocity around the cylinders. Horse-shoe vortex systems were found to appear closer to the submerged cylinders compared to a surface piercing cylinder. The increase in dimensionless bed-shear stress is found to be inversely related to the level of submergence of the cylinders. Bed-shear stress results presented in this paper will be valuable for a qualitative understanding of the scour potential of flow around submerged cylinders. Mean velocity profiles in the deflected flow region were analyzed in terms of the theories of three-dimensional turbulent boundary layer. Submergence of a cylinder has been found to suppress alternate vortex shedding and produce stronger three-dimensional flows in the downstream wake. Perry and Joubert’s model was found to be sufficiently accurate to predict the deflected velocity magnitudes around submerged cylinders. Overall, the present study will provide valuable knowledge of hydraulics of flow around submerged structures (e.g., simple fish habitat structures).  相似文献   

2.
The experimental study shows how an open-channel flow would respond to a sudden change (from smooth to rough) in bed roughness. Using a two-dimensional acoustic Doppler velocimeter and a laser Doppler velocimeter, the velocity, turbulent intensities, and Reynolds stress profiles at different locations along a laboratory flume were measured. Additionally, the water surface profile was also measured using a capacitance-type wave height meter. The experimental data show the formation of an internal boundary layer as a result of the step change in bed roughness. The data show that this boundary layer grows much more rapidly than that formed in close-conduit flows. The results also show that the equivalent bed roughness, bed-shear stress, turbulent intensities, and Reynolds stress change gradually over a transitional region, although the bed roughness changes abruptly. The behavior is different from that observed in close-conduit flows, where an overshooting property—which describes the ability of the bed-shear stress to attain a high-peak value over the section with the larger roughness, was reported. A possible reason for the difference is the variation of the water surface profile when an open-channel flow is subjected to a sudden change in bed roughness.  相似文献   

3.
The results of an experimental investigation on the flow field in submerged jumps on horizontal rough beds, detected by an acoustic Doppler velocimeter, are presented. Experiments were conducted for the conditions of submerged jumps, having submergence factors from 0.96 to 1.85 and jet Froude numbers from 2.58 to 4.87, over rough beds of Nikuradse’s equivalent sand roughness equaling 0.49, 0.8, 1.86, and 3?mm. The vertical distributions of time-averaged velocity components, turbulence intensity components, and Reynolds stress at different streamwise distances from the sluice opening and the horizontal distribution of bed-shear stress are plotted. Vector plots of the flow field show that the rate of decay of jet velocity in a submerged jump increases with increase in bed roughness. The flow characteristics on rough beds, being different from those on smooth bed, are discussed from the point of view of similarity, growth of the length scale, and decay of the velocity and turbulence characteristics scales. The most important observation is that the flow in the fully developed zone is found to be self-preserving.  相似文献   

4.
The present study examines the flow around a self-occurring cluster bed form and the use of general computation fluid dynamics methods for hydraulic and geophysical flow applications. This is accomplished through a comprehensive experimental/numerical investigation. In the laboratory, cluster bed forms are first formed from movable sediment, and laser Doppler velocimeter measurements of two-dimensional fluid velocity are then taken around a formed cluster. A three-dimensional (3D) Reynolds averaged Navier-Stokes simulation of the physical cluster and flow conditions is then conducted using near-wall, shear stress transport (SST) turbulence modeling with the inclusion of hydraulic roughness, ks (R = 31,150, ks/h = 0.1, ks+ = 274, i.e., in the fully rough regime). SST near-wall modeling is advantageous compared to the more widely used wall functions approach for flows with significant roughness and flow separation because the model equations can be integrated down to the wall. Therefore, SST near-wall modeling makes no a priori assumption that the law of the wall is valid throughout the wall region of the flow. Additionally, it has the ability to intrinsically handle boundary roughness through the boundary condition for turbulent specific dissipation at the wall, allowing for wall functions to be bypassed in accounting for roughness effects. The study shows that in the wall region surrounding the cluster, flow is 3D and quite complex, with different scales of embedded flow structures dominating the cluster wake and leading to flow heterogeneities in pressure and bed-shear stress. Results also indicate that near-wall modeling with SST compared favorably with the experimental flow data without tuning of model constants.  相似文献   

5.
Distributions of bed shear stress across the width of a rotating circular flume with smooth and rough bed surfaces were obtained by measurement and model prediction. Results with flows over smooth beds showed that the flow in the central part may be considered to be two-dimensional and that effects of flow depth over the operating range of the flume are minor for flow depths not exceeding 0.14 m. For rough beds, the bed shear stress distributions were found to be skewed toward the inner wall. This can be corrected if a compensating roughness is added to the bottom of the ring. Such measures are also effective for flumes with smooth beds. Measured bed shear stress distributions agreed well with the predicted distributions for smooth beds and reasonably well for rough beds. The modified Preston tube, for measurement of bed shear stress in flows over rough beds, was found to give promising results. Further tests are required to completely define the uncertainty in bed shear stress measurements made with this instrument.  相似文献   

6.
Experimental Study of Bed Load Transport through Emergent Vegetation   总被引:1,自引:0,他引:1  
Vegetation is an important agent in fluvial geomorphology and sedimentary processes, through its influence on the local hydraulics that determine sediment transport. Within stands of emergent vegetation, bed shear is substantially reduced through the absorption of momentum by drag on the stems. This stimulates deposition of sediment and reduces capacity for bed load transport. The effect of emergent vegetation on hydraulic parameters (including equilibrium bed gradient, flow depth, and velocity) and on bed load transport rate has been investigated experimentally for one sediment size, stem diameter, and stem spacing. Bed load transport rate was found to be closely related to bed-shear stress, which must be estimated by partitioning total flow resistance between stem drag and bed shear.  相似文献   

7.
A thorough understanding of the effect of raindrop impacts on the characteristics of a shallow flow is very helpful to properly predict and control water erosion. The turbulence properties of a shallow rain-impacted flow over a rough bed were studied using a two-dimensional fiber-optic laser Doppler velocimeter and an oscillating type raindrop generator. It was found that the value of momentum correction factor β for a rough boundary was much smaller than that for a smooth boundary at a given value of Reynolds number because of the vertical mixing effect of the boundary roughness. For the condition without rainfall, the vertical distribution of the longitudinal turbulence intensity became more uniform as the boundary roughness increased. For the “fully rough” condition with rainfall and constant roughness size, the effect of roughness on the distributions of turbulence intensities was small. Similar to the condition with smooth boundary, the rainfall-generated turbulence was greatest near the water surface and decreased downward at an exponential rate for the flow over rough bed. Two types of statistical correlations were developed to predict the distributions of both the longitudinal and the vertical turbulence intensities depending on whether the flow is completely penetrated by the raindrops.  相似文献   

8.
Results of an experimental study on clear-water scour at submerged cylindrical obstacles (circular cylinders) in uniform bed sediments under steady flow are presented. The scour depths at submerged circular cylinders are compared with the scour depths at corresponding unsubmerged cylinders (extended above the free surface of flow) of the same diameters under similar flow and bed sediment conditions. The scour depth decreases with an increase in submergence ratio. A submergence factor is introduced to determine the scour depth at a submerged cylinder from the information of the scour depth at an unsubmerged cylinder of the same diameter. In addition, the flow fields along the upstream vertical plane of symmetry of unsubmerged and submerged cylinders are presented through vector plots, which reveal that the dimension and strength of the horseshoe vortex decreases with an increase in submergence ratio. The horseshoe vortex circulations, which decrease with an increase in submergence ratio, are computed from the vorticity contours by using the Stokes theorem.  相似文献   

9.
The bed morphology of mountain rivers is characterized primarily by the presence of distinguishable isolated roughness elements, such boulders or clasts. The objective of this experimental study was to provide a unique insight into the role of an array of clasts in regulating sand movement over gravel beds for low relative submergence conditions, H/dc<1, and flow depth, H, to the diameter of the clast, dc, a process that has not been studied thoroughly. To assess the role of clasts in controlling incoming sand movement, detailed flume experiments were conducted by placing 40 equally spaced clasts atop a well-packed glass bead bed for replicating the isolated roughness flow regime. The experiments were performed for moderate ( ~ 2.50τcr* where τcr* is the critical dimensionless bed shear stress) and high ( ~ 5.50τcr*) applied bed shear stress conditions, representative of gravel bed rivers. For comparison purposes, experiments were also repeated for nearly identical flow conditions but without the presence of clasts to discern the potential effects that clasts may have on sediment movement and hydraulics within the clast array region and also in the upstream section of the clast region where few observations exist. The experimental results revealed the formation of two distinguishable bed morphological features, namely a funnel shaped “sand ridge” upstream from the clast array region and small depositional “sand patches” around individual clasts. The sand patches were formed in the stoss region of the clasts, which contradicted previous observations of depositional patterns around clasts under high relative submergence conditions (H/dc>1) where, in this case, depositional patches were observed to have formed in the clast wake region. Furthermore, most of the incoming sand was found to be intercepted by the evolving sand ridge upstream from the clast array region with implications in the amount of sand entering the clast array region. The exiting bed-load rate was found to be reduced by a factor of ~ 5.0–20, depending on the prevailing flow conditions when experiments with and without clasts were compared under nearly identical flow conditions. The findings of this research, although limited to the isolated roughness regime, may have significant ramifications in stream restoration projects for the design of engineered riffle sections, which typically consist of an array of clasts installed to improve degraded waterways and aquatic habitat.  相似文献   

10.
Depth-Averaged Shear Stress and Velocity in Open-Channel Flows   总被引:1,自引:0,他引:1  
Turbulent momentum and velocity always have the greatest gradient along wall-normal direction in straight channel flows; this has led to the hypothesis that surplus energy within any control volume in a three-dimensional flow will be transferred toward its nearest boundary to dissipate. Starting from this, the boundary shear stress, the Reynolds shear stress, and the velocity profiles along normal lines of smooth boundary may be determined. This paper is a continuous effort to investigate depth-average shear stress and velocity in rough channels. Equations of the depth-averaged shear stress in typical open channels have been derived based on a theoretical relation between the depth-averaged shear stress and boundary shear stress. Equation of depth mean velocity in a rough channel is also obtained and the effects of water surface (or dip phenomenon) and roughness are included. Experimental data available in the literature have been used for verification that shows that the model reasonably agrees with the measured data.  相似文献   

11.
The problem of suspended load and bed load transport in river and coastal flows over graded beds is addressed. Two effects are important: the degree of exposure of the sediment particles of unequal size within a mixture (hiding of smaller particles resting or moving between the larger particles) and the nonlinear dependence of transport on particle diameter. The former effect can be modeled by modifying the critical bed-shear stress through a correction factor and by modifying the effective grain roughness through another correction factor. The modeling of the effective bed-shear stress parameter is studied by using various alternative methods. Based on comparison with suspended load and bed load transport data for graded beds in steady and oscillatory flow, the most promising method is selected. The proposed prediction method is found to work well for the fine sand bed range as well as the coarse sand-gravel bed range.  相似文献   

12.
This paper reports the results of an experimental study characterizing turbulence and turbulence anisotropy in smooth and rough shallow open-channel flows. The rough bed consists of a train of two-dimensional transverse square ribs with a ratio of the roughness height (k) to the total depth of flow (d) equal to 0.10. Three rib separations (p/k) of 4.5, 9, and 18 were examined. Here, p is the pitch between consecutive roughness elements and was varied to reproduce the classical condition of d- and k-type roughness. For each case, two-component velocity measurements were obtained using a laser Doppler velocimetry system at two locations for p/k = 4.5 and 9: on the top of the rib and above the cavity, and an additional location for p/k = 18. The measurements allow examination of the local variations of the higher-order turbulent moments, stress ratios as well as turbulence anisotropy. Large variations of the turbulence intensities, Reynolds shear stress, turbulent kinetic energy and turbulence production are found for y1<3k. In this region, the flow is more directly influenced by the shear layers from the preceding ribs. The higher-order moments appear to be similar for all rough surfaces beyond y1 ≈ 7k. In the outer layer (y1>3k), all higher-order turbulent moments for the k-type roughness show a substantial increase due to the complex interactions between the roughness and the remnants overlying shear layers shed from succeeding ribs. Analysis of the components of the Reynolds stress anisotropy tensor shows that at p/k = 18, the flow at y1<5k tends to be more isotropic which implies that for this particular case, the effect of the roughness density could also be important. On the smooth bed, at the shallower depths, the correlation coefficient near the free surface increases and turbulence tends to become less anisotropic.  相似文献   

13.
In this paper it is suggested that the double-averaged (in temporal and in spatial domains) momentum equations should be used as a natural basis for the hydraulics of rough-bed open-channel flows, especially with small relative submergence. The relationships for the vertical distribution of the total stress for the simplest case of 2D, steady, uniform, spatially averaged flow over a rough bed with flat free surface are derived. These relationships explicitly include the form-induced stresses and form drag as components of the total stress. Using this approach, we define three types of rough-bed flows: (1) Flow with high relative submergence; (2) flow with small relative submergence; and (3) flow over a partially inundated rough bed. The relationships for the double-averaged velocity distribution and hydraulic resistance for all three flow types are derived and compared with measurements where possible. The double-averaged turbulent and form-induced intensities and stresses for the case of regular spherical-segment-type roughness show the dominant role of the double-averaged turbulence stresses and form drag in momentum transfer in the near-bed region.  相似文献   

14.
In the saltation regime where bed-shear stress is low, bed load moves by sliding, rolling, and saltating along the bed, while in the sheet-flow regime where bed-shear stress is high, it travels by a combination of saltation and sheet flow. In this paper a theoretical model is developed for predicting the onset of the sheet-flow regime as shear stress increases. This model is based on a new variable Pb representing the proportion of grains on the bed that are entrained as bed load. The model yields the equation Pb = 2.56θG3 in which G = 1?θc/θ, θ = dimensionless bed-shear stress; and θc = critical value of θ at which grains begin to move. The equation shows that θt, which is the value of θ at the onset of the sheet-flow regime and is assumed to occur when Pb = 1, is around 0.5 with the exact value controlled by θc. For example, when θc = 0.045, θt = 0.52. The theoretical model is verified by performing a nonlinear regression analysis on data from 285 flume experiments. Additional flume experiments with a high-speed video (HSV) system result in consistent values of θ for the onset of the sheet-flow regime, which support the theoretical model. The HSV images further reveal that: (1) the sheet-flow regime is characterized by granular sheets or laminations; and (2) a zone of mixed saltation and rolling grains exists not only in the saltation regime but also in the sheet-flow regime.  相似文献   

15.
The distribution of boundary shear stress in circular conduits flowing partially full, with and without a smooth flat bed simulating deposited sediments, has been examined experimentally ranging from 0.375 < F < 1.96 and 6.5 × 104 < R < 3.42 × 105, using the Preston tube technique The invert level of the flat bed and the water depth have been varied to simulate a wide range of possible flow conditions that may occur in culverts, sewers, and hydropower tunnels. The distribution of boundary shear stress around the wetted perimeter is shown to be highly sensitive to changes in cross-sectional shape. The results have been analyzed in terms of the variation of local∕global shear stress versus perimetric distance, and the percentage of the total shear force acting on the wall or bed of the conduit. The %SFw results have been shown to agree well with Knight's empirical formula for prismatic channels. The influence of secondary flows on the distribution of boundary shear stress and the implications of this for sediment transport have also been examined.  相似文献   

16.
17.
The paper presents a study on the influence of gravity on the incipient motion and the bed-load transport of sediment. The computation of critical bed-shear stress is revisited considering the balance of forces (hydrodynamic forces and submerged self-weight) acting on a solitary sediment particle lying on an arbitrary sloping bed. Modified effective bed-shear stress and the corresponding critical bed-shear stress, which are defined to assess the incipient motion of sediment in the direction of resultant force, are applied for the estimation of bed-load transport rate in the direction of resultant force. The sediment transport induced by the gravitational force, which is oblique to the direction of the drag force induced by flow, is incorporated into the bed-load transport equation. This modified model provides a reasonable prediction of the critical bed-shear stress and the bed-load transport rate. The model is validated by experimental data. It can be applied to steep slopes and can also avoid the problem of singularity that arises in numerically calculation of sediment transport rate. Additionally, the vectorial transport rate obtained in the model calculation can be implemented in a numerical simulation of channel bed evolution.  相似文献   

18.
Double-Averaged Open-Channel Flows with Small Relative Submergence   总被引:1,自引:0,他引:1  
We investigate the turbulent structure of shallow open channel flows where the flow depth is too small (compared with the roughness height) to form a logarithmic layer but large enough to develop an outer layer where the flow is not directly influenced by the roughness elements. Since the log layer is not present, the displacement height d, which defines the position of the zero plane, and the shear velocity u* cannot be found by fitting the velocity data to the log law. However, these parameters are still very important because they are used for scaling flow statistics for the outer and roughness layers. In this paper we propose an alternative procedure for evaluating d in laboratory conditions, where d is found from additional experiments with the fully developed log layer. We also point out the appropriate procedure for evaluating the shear velocity u* for flows with low submergence. These procedures are applied to our own laboratory flume experiments with uniform sphere roughness, where velocities were measured using Particle Image Velocimetry. Results were interpreted within the framework of the double-averaged Navier–Stokes equations and include mean velocities, turbulence intensities, Reynolds stresses, and form-induced normal and shear stresses. The data collapse well and show that in flows without a developed log layer the structure of turbulence in the outer layer remains similar to that of flows with a log layer. This means that even though the roughness layer in the experiments reported herein was sufficiently high to prevent the development of the log layer, influence of the bed roughness did not spread further up into the outer layer. Furthermore, the results show that flow statistics do not depend on relative submergence except for the form-induced stresses which increase when relative submergence decreases.  相似文献   

19.
Computing Nonhydrostatic Shallow-Water Flow over Steep Terrain   总被引:1,自引:0,他引:1  
Flood and dambreak hazards are not limited to moderate terrain, yet most shallow-water models assume that flow occurs over gentle slopes. Shallow-water flow over rugged or steep terrain often generates significant nonhydrostatic pressures, violating the assumption of hydrostatic pressure made in most shallow-water codes. In this paper, we adapt a previously published nonhydrostatic granular flow model to simulate shallow-water flow, and we solve conservation equations using a finite volume approach and an Harten, Lax, Van Leer, and Einfeldt approximate Riemann solver that is modified for a sloping bed and transient wetting and drying conditions. To simulate bed friction, we use the law of the wall. We test the model by comparison with an analytical solution and with results of experiments in flumes that have steep (31°) or shallow (0.3°) slopes. The law of the wall provides an accurate prediction of the effect of bed roughness on mean flow velocity over two orders of magnitude of bed roughness. Our nonhydrostatic, law-of-the-wall flow simulation accurately reproduces flume measurements of front propagation speed, flow depth, and bed-shear stress for conditions of large bed roughness.  相似文献   

20.
The standard k?ω turbulence model and two versions of blended k?ω/k?ε models have been used to study the characteristics of a one-dimensional oscillatory boundary layer on a rough surface. The wall boundary condition for the specific dissipation rate of turbulent kinetic energy at the wall is specified in terms of a function based on wall roughness. A detailed comparison has been made for mean velocity, turbulent kinetic energy, Reynolds stress, and wall shear stress with the available experimental data. The three models predict the above properties reasonably well. In particular, the prediction of turbulent kinetic energy for the rough case by the blended models is much better than that for smooth oscillatory boundary layers as reported in previous studies. As a result of the present study, the use of one of the blended models in calculating the sediment transport in coastal environments may be recommended.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号