首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
The convection velocity of vortex structures in the near wake of a circular cylinder was experimentally investigated over the region 1.6–2.5 ? x/D ? 12.0 for R = 160–12,000. Dye injection technique of flow visualization and two completely noninvasive laser Doppler velocimeters were employed for R ? 320 and ?400, respectively. The convection velocity, Uc, is defined as the mean traveling velocity of vortex cores passing a streamwise separation during a mean elapsed time. For R ? 320, Uc was determined directly from the motion of dye-marked vortex cores filmed by a video camera. In the cases of R ≥ 400, the positions of peak vorticity and half of the half-velocity-defect width at each downstream section were first used to identify the mean path of vortex cores (i.e., the most probable trajectory of the vortex structures), along which spatial correlation measurements were then performed to determine the mean elapsed time corresponding to the maximum cross correlation. The present results show that, in laminar and transitional wakes, the ratio Uc/Uo increases from 0.53 to 0.84 over a region of 1.6 ? x/D ? 6.0 and then tends to be a constant of 0.84 for x/D ≥ 6.0. In a turbulent wake, Uc/Uo also increases from a certain value at a point downstream from the position of vortex formation to a mean value of about 0.86 at x/D ≥ 5.0–6.0, and then changes little with the increase of x/D. In addition, it is found that the dependence of Uc/Uo on R almost disappears for x/D ≥ 5.0.  相似文献   

2.
This paper presents a large eddy simulation (LES) of turbulent open channel flow over two-dimensional periodic dunes. The Reynolds number R based on the bulk velocity U(bulk) and the maximum flow depth h, is approximately 25,000. The instantaneous flow field is investigated with special emphasis on the occurrence of coherent structures. Instantaneous vortices were visualized and it is shown that separated vortices are formed downstream of the dune crest due to Kelvin–Helmholtz instabilities. Near the point of reattachment the so-called kolk-boil vortex evolves in form of a hairpin vortex. Also present are previously separated vortices, which are convected along the stoss side of the downstream dune and elevated toward the water surface. The existence of near wall streaks which reform shortly after reattachment is also shown. The spacing between two low-speed streaks is very similar to that observed previously over smooth and rough walls. For validation, profiles of the time-averaged velocities, streamwise, and wall-normal turbulent intensities and the Reynolds shear stress calculated by the LES are presented and compared with available laser Doppler velocimetry measurements and overall good agreement is found.  相似文献   

3.
This paper presents an experimental investigation on the characteristics of a horseshoe vortex system near the juncture of a square cylinder and a horizontal base plate, using particle image velocimetry and flow visualization technique. Experiments were conducted for Reynolds numbers (based on the free stream velocity and the width of square cylinder) ranging from 2.0×102 to 6.0×103. The flow patterns are first classified into four major regimes: Steady horseshoe vortex system, periodic oscillation vortex system with small displacement, periodic breakaway vortex system, and irregular vortex system. The classifications can be demonstrated as a figure of Reynolds number versus the ratio of the height of square cylinder to undisturbed boundary layer thickness. The study then mainly focused on the characteristics of steady horseshoe vortex system (corresponding to Reynolds numbers ranging from 2.0×102 to 2.5×103). The nondimensional characteristics, including the horizontal and vertical distances from the primary vortex core to frontal face of the vertical square cylinder and bottom boundary of the base plate, respectively, the height of stagnation point at frontal face of the square cylinder, and the down-flow discharge as well as circulation of the primary vortex, all increase with increase of the ratio of the height of square cylinder to undisturbed boundary layer thickness. However, they all decrease with the increase of the aspect ratio (i.e., the height-to-width ratio) of the square cylinder. The study provides essential properties of a steady horseshoe vortex system and gives an insight for related engineering applications. It can be served as a basis for more complicated horseshoe vortex systems occurring at high Reynolds numbers.  相似文献   

4.
The force coefficients and the frequency of vortex shedding in the wake of a square cylinder exposed to a uniform shear flow and the flow structure around it were numerically investigated. The Reynolds number defined on the basis of cylinder width was in the range of 250–1,500. The shear parameter, namely the transverse velocity gradient, which is nondimensionalized using the obstacle width and the average incoming velocity, was varied between 0 and 0.2. Analyses were performed for a number of flow parameters using various combinations of Reynolds number and shear parameters. Results show that mean and root-mean-square values of drag coefficient initially decrease up to certain values of the shear rate and then increase with increase in shear parameter. The root-mean-square values of lift coefficient show a similar behavior. The Strouhal number decreases uniformly with increase in shear parameter. At higher shear rates, the von Kármán vortex street comprising alternating vortices breaks, and the far wake shows mainly clockwise vortices.  相似文献   

5.
Steady streaming due to an oscillatory flow around a circular cylinder close to and sitting on a plane boundary is investigated numerically. Two-dimensional (2D) Reynolds-averaged Navier-Stokes equations are solved using a finite element method with a k-ω turbulent model. The flow direction is perpendicular to the axis of the cylinder. The steady streaming around a circular cylinder is investigated for Keulegan-Carpenter (KC) number of 2 ≤ KC ≤ 30 with a constant value of Stokes number (β) of 196. The gap (between the cylinder and the plane boundary) to diameter ratio (e/D) investigated is in the range of 0.0–3.0. The steady streaming structures and velocity distribution around the cylinder are analyzed in detail. It is found that the structures of steady streaming are closely correlated to KC regimes. The gap to diameter ratio (e/D) has a significant effect on the steady streaming structure when e/D<1.0. The magnitude of the steady streaming velocity around the cylinder can be up to about 70% of the velocity amplitude of the oscillatory flow. One three-dimensional (3D) simulation (KC = 10, β = 196, and e/D = ∞) is carried out to examine the effect of three dimensionality of the flow on the steady streaming. Although strong 3D vortices are found around the cylinder, the steady streaming in a cross section of the cylinder span is in good agreement with the 2D results.  相似文献   

6.
A method which combines two nonintrusive imaging techniques, particle tracking velocimetry and laser induced fluorescence, was used to make simultaneous measurements of velocity and concentration in a neutrally buoyant turbulent round jet. The measurements were made at two different Reynolds numbers (R), 360 and 4,210, at a Schmidt number of 1,930. The mean velocity 〈u〉, mean concentration 〈c〉, Reynolds stress ?〈u′v′〉, and turbulent scalar flux 〈v′c′〉 were obtained and the eddy viscosity, eddy diffusivity, and turbulent Prandtl number (Prt) calculated from these measurements. Both the low and high Reynolds number results show self-similar characteristics that are dependent on R with Prt a function of radial position. For the R=4,210 case, it was found that 0.70.12. For the R=360 case, it was found that Prt ≈ 0.4 for 0.06相似文献   

7.
A velocimeter called the Karman vortex probe was developed to measure the velocity of molten-steel flow near the meniscus in continuous-casting molds. The measurement principle of this probe is based on a linear relationship between molten-steel velocity and the shedding frequency of Karman’s vortex streets, which are formed behind a circular cylinder immersed in the molten-steel flow field. Calibration of the probe was made in the absence of, as well as in the presence of, mold powder. The adequacy of the presently developed Karman vortex probe was verified partly by comparing the molten-steel velocity data measured in actual continuous-casting molds to those obtained using a water model with the same shape and size as the actual mold. The meniscus-flow velocity in the absence of electromagnetic braking increased and then slightly decreased with an increase in the casting speed.  相似文献   

8.
This paper presents the results of an experimental study of flow around cylindrical objects in an open channel. Cylindrical objects of equal diameter and four heights were tested under similar flow conditions producing four different levels of submergence, including a surface piercing bridge-pier-like cylinder. Different flow elements and their locations were identified using a set of flow visualization tests. Observations made from the flow visualization tests were then verified by measurements of bed-shear stress and deflected flow velocity around the cylinders. Horse-shoe vortex systems were found to appear closer to the submerged cylinders compared to a surface piercing cylinder. The increase in dimensionless bed-shear stress is found to be inversely related to the level of submergence of the cylinders. Bed-shear stress results presented in this paper will be valuable for a qualitative understanding of the scour potential of flow around submerged cylinders. Mean velocity profiles in the deflected flow region were analyzed in terms of the theories of three-dimensional turbulent boundary layer. Submergence of a cylinder has been found to suppress alternate vortex shedding and produce stronger three-dimensional flows in the downstream wake. Perry and Joubert’s model was found to be sufficiently accurate to predict the deflected velocity magnitudes around submerged cylinders. Overall, the present study will provide valuable knowledge of hydraulics of flow around submerged structures (e.g., simple fish habitat structures).  相似文献   

9.
This paper documents measurements of the mean velocity field and turbulence statistics of an isothermal, round jet entering a shallow layer of water. The lower boundary of the jet was a solid wall and the upper boundary a free surface. The jet axis was midway between the solid wall and the free surface in all cases. Experiments were performed at a Reynolds number of 22,500 for water layer depths 15, 10, and 5?times the jet exit diameter (9?mm). Particle image velocimetry measurements were made on vertical and horizontal planes—both containing the axis of the jet. The measurements were taken from 10 to 80 jet diameters downstream. Results showed that, for the highly confined cases at downstream locations, the axial velocity was quite uniform over the depth, with a mild peak below the jet axis. In the horizontal plane, the velocity profiles were slightly narrower than the free jet profile, but in the vertical plane, they were wider. The mean vertical velocity profiles showed that entrainment was suppressed in the vertical direction. At the same time, the lateral velocity profiles indicate that fluid flows from the sides toward the jet centerline. For the shallow cases, the mean vertical velocity becomes negative over most of the depth at downstream locations, indicating that this inflow from the sides is directed downward toward the solid wall. The relative turbulence intensity results were suppressed in the axial and vertical directions and mildly enhanced in the lateral direction. As well, the Reynolds shear stress in the vertical plane was significantly reduced by the vertical confinement, while in the horizontal plane it was only slightly affected by the confinement.  相似文献   

10.
Flow past a square cylinder placed at an angle to the incoming flow is experimentally investigated using particle image velocimetry, hot wire anemometry, and flow visualization. The Reynolds number based on cylinder size and the average incoming velocity is set equal to 410. Data for four cylinder orientations (θ = 0, 22.5, 30, and 45°) and two aspect ratios [AR = 16 and 28] are reported. Results are presented in terms of drag coefficient, Strouhal number, time averaged velocity, stream traces, turbulence intensity, power spectra, and vorticity field. In addition, flow visualization images in the near wake of the cylinder are discussed. The shape and size of the recirculation bubble downstream of the cylinder are strong functions of orientation. A minimum in drag coefficient and maximum in Strouhal number is observed at a cylinder orientation of 22.5°. The v-velocity profile and time-average stream traces show that the wake and the separation process are asymmetric at orientations of 22.5 and 30°. The corresponding power spectra show additional peaks related to secondary vortical structures that arise from nonlinear interaction between the Karman vortices. The flow visualization images show the streamwise separation distance between the alternating vortices to be a function of cylinder orientation. Further, the flow approaches three dimensionality early, i.e., closer to the cylinder surface for the 22.5° orientation. The drag coefficient decreases with an increase in aspect ratio, while the Strouhal number is seen to increase with aspect ratio. The turbulence intensity is higher for the large aspect ratio cylinder and the maximum turbulence intensity appears at an earlier streamwise location. The overall dependence of drag coefficient and Strouhal number on orientation is preserved for the two aspect ratios studied.  相似文献   

11.
This paper presents the results of an experimental study of flow around cylindrical objects on a rough bed in an open channel. This is an extension of a previous study of flow around cylinders on a smooth bed. The purpose of this study is to explore the effects of bed roughness on the characteristics of the deflected flow around cylindrical objects and the resulting bed-shear stress distributions. Similar to the previous study cylindrical objects of equal diameter and four heights were tested under similar flow conditions producing four different levels of submergence. Bed shear stress and deflected flow velocities were measured by a thin yaw-type Preston probe after a set of flow visualization tests. Flow visualization tests showed that the horse-shoe vortex systems on the rough bed occupy a relatively greater width compared to the smooth bed. Unlike smooth bed observations, the flow separation point upstream of the cylinder was not dependent on the level of submergence as the separation points were found to appear within a short range of x = ?1D to ?1.2D. Bed shear stress has been found to increase significantly near the shoulder of the cylinders, and its ratio with respect to the approach bed-shear stress was twice as large compared to the smooth bed case. Mean velocity profiles were analyzed in terms of three-dimensional turbulent boundary layer theories. Bed roughness was found to oppose the effect of the lateral pressure gradient that causes skewing in the boundary layer. Perry and Joubert’s model has been found to be equally accurate on smooth and rough beds for predicting the deflected velocity magnitudes around cylinders. The present study will enhance the knowledge of hydraulics of flow around bed-mounted objects (e.g. fish-rocks) in natural streams.  相似文献   

12.
The time-averaged characteristics of turbulent wall-wake flows downstream of a sphere placed on a rough wall are studied. The profiles of the defect of streamwise velocity, Reynolds shear stress, and turbulence intensities exhibit some degree of similarities when they are scaled by their respective peak defect values. For the velocity defect profiles, the vertical distances are scaled by the height of the location of the half-peak velocity defect. However, for the defect profiles of the Reynolds shear stress and the turbulence intensities, the vertical distances are scaled by the height of the location of the half-peak Reynolds shear stress defect. The magnitudes of the peak defect of all the quantities diminish with the distance downstream of the sphere characterizing the recovery of their undisturbed profiles. Additionally, the theoretical similarity solution for the velocity defect profiles is obtained. The third-order correlations imply that in the inner layer of wall wakes, a streamwise acceleration is prevalent and associated with a downward flux, suggesting sweeps. In contrast, in the outer layer, a streamwise deceleration exists and is associated with an upward flux, suggesting ejections. The profiles of the energy budget show that the turbulent and pressure energy diffusions oppose each other. The turbulent production has a positive peak, and the pressure energy diffusion has a negative peak, indicating a large gain in turbulence production in the wall-wake flows. The quadrant analysis confirms that in wall-wake flows, sweeps are the governing mechanism resulting from an inrush of fluid streaks. The bursting events have shorter duration, but they are more frequent than those in upstream.  相似文献   

13.
The turbulence structure of a rectangular surface jet is compared to that of the three-dimensional free and wall jets. The surface jet turbulence quantities are mapped using laser Doppler velocimetry. In general, the turbulence structure of these three jets is found to be significantly different. For the surface jet, the free surface kinematic condition has a predominant effect on the whole structure, while for the wall jet, the influence of wall kinematic constraint is contained in the wall layer. A surface current with a higher lateral spreading rate than the submerged portion of the jet is developed, which does not exist for the wall jet because of the no-slip boundary condition. Unlike free jets, the submerged portion of the rectangular surface jet is characterized by two length scales. The Prandtl hypothesis with constant eddy viscosity provides a good estimate for the shear stresses in the lateral direction, but fails in the vertical direction, where the velocity profiles are much flatter, due to the free surface condition, than those for the free and wall jets.  相似文献   

14.
Aquatic suspended canopies are porous obstacles that extend down from the free-surface but have a gap between the canopy and bed. Examples of suspended canopies include those formed by aquaculture structures or floating vegetation. The major difference between suspended canopies and the more common submerged canopies, which are located on the bottom boundary, is the influence of the bottom boundary layer beneath the suspended canopy. Data from laboratory experiments are presented which explore aspects of the flow through and beneath suspended canopies constructed from rigid cylinders. The experiments, using both acoustic Doppler and two-dimensional (2D) particle tracking velocimetry, give details of the flow structure that may be divided vertically into a bottom boundary layer, a canopy shear layer, and an internal canopy layer. The experimental data show that the penetration of the shear layer into the canopy is limited by the distance between the canopy and bottom boundary layer. Peaks in velocity spectra indicate an interaction between the bottom boundary and canopy shear layer. An analytical model is also developed that can be used to calculate a drag coefficient that includes the effect of both canopy drag and bed friction. This drag coefficient is suitable for use in 2D (depth-averaged) hydrodynamic modeling. The model also allows the average velocity within and beneath the canopy to be calculated, and is used to investigate the effect of canopy density and thickness on both total drag and bottom friction.  相似文献   

15.
This paper presents simultaneous measurements using particle image velocimetry (PIV) and laser Doppler velocimetry (LDV) techniques on the study of a horseshoe vortex system. The horseshoe vortex system is generated near the juncture of a vertical square cylinder and a horizontal base plate. The combination of PIV and LDV not only gives the spatial distribution and time history of velocity near the juncture for spatial and time domain analyses, it also allows phase averaging the PIV velocity data to reduce noise and, in a turbulent flow, result in turbulence statistics. A flow visualization technique displaying particle streaklines has also been used to help the classification of the vortex system and visualize the flow motion and vortex evolution. The classification of the horseshoe vortex was briefly categorized as steady, periodical oscillatory, and turbulence-like chaotic vortex systems through the use of the flow visualization technique and time-domain spectral analysis. Phase-averaged flow characteristics of the periodical oscillatory vortex system with a Reynolds number of 2,250 are presented in detail through the use of PIV and LDV as well as the flow visualization technique.  相似文献   

16.
This study characterizes the shear layer and associated vortex shedding around an isolated submerged pebble cluster in a gravel-bed river. The approach combines flow visualization and high frequency three-dimensional velocity (acoustic Doppler velocimeter) measurements. Two vortex shedding modes in the wake of the cluster were identified: A small scale high frequency initial instability mode and a lower frequency mode that scales with cluster height. The lower frequency mode arose from the intermittent interaction and amalgamation of the small-scale instability vortices. Reynolds shear stresses, velocity spectra, and coherence functions indicated a dominance of longitudinal-vertical shedding vortices in the wake of the cluster. Simultaneous flow visualization was required to determine the nature and behavior of the shedding modes. Quadrant analysis revealed that Q2 and Q4 events contributed 80% of the local longitudinal-vertical component Reynolds shear stress, and demonstrated a dominance of ejection events in the wake of the cluster. Through flow visualization, the behavior of the shear layer was seen to vertically expand and contract with the passage of Q2 and Q4 events, respectively.  相似文献   

17.
Measurements of the mean and turbulent flow fields in undular and hydraulic jumps have been acquired with single-camera particle image velocimetry (PIV). Three Froude numbers, ranging from 1.4 to 3.0, were studied, and in each case data were collected at numerous streamwise locations. The data from these streamwise locations were subsequently compiled into spatially dense ( ~ 80,000 grid points) “mosaic” images encompassing both the supercritical and subcritical portions of the flow. The measured mean and turbulent velocity fields provide more detailed views inside undular and hydraulic jumps than were previously available from studies using pointwise measurement techniques. The two-dimensional spatial density of the measurements provides for the determination of gradient-based quantities such as vorticity. The potential for determining boundary shear stress from the velocity data is evaluated with several methodologies. The results are found to be consistent with recent measurements made using Preston tubes. Discussion of the technical aspects of and difficulties involved with applying PIV to hydraulic jumps is provided. These challenges included the identification and tracking of the free surface through image analysis and the scattering of laser light by entrained air bubbles in the roller region.  相似文献   

18.
In this study, the characteristics of near-bed turbulence were experimentally investigated for three distinct roughness regimes, namely (1) isolated; (2) wake interference; and (3) skimming. Spherical particles of the same size and density were placed upon a rough sediment bed to simulate the three regimes. Experimental runs for the aforementioned regimes were performed in a tilting water-recirculating flume. Flow measurements atop the spherical particles were performed by means of a 3D laser Doppler velocimeter. The aim of the tests was to provide further evidence that the structure of turbulence is affected throughout the boundary layer by the presence of roughness geometry. The measurements reported here include velocity profiles of the mean streamwise and vertical velocity components and of the Reynolds shear stress distribution. To further quantify the differences in turbulent structure under various surface roughnesses, a quadrant analysis was performed.  相似文献   

19.
Momentum Exchange in Straight Uniform Compound Channel Flow   总被引:1,自引:0,他引:1  
Transverse exchange of momentum between the channel and the floodplain in straight uniform compound channel flow is considered in this paper. This process results in the so-called “kinematic effect,” a lowering of the total discharge capacity of a compound channel compared to the case where the channel and the floodplain are considered separately. The mechanisms responsible for the momentum exchange are considered. The transverse shear stress in the mixing region is modeled using a newly developed effective eddy viscosity concept, that contains: (1) the effects of horizontal coherent structures moving on an uneven bottom, taking compression and stretching of the vortices into account and (2) the effects of the three-dimensional bottom turbulence. The model gives a good prediction of the transverse profiles of the streamwise velocity and the transverse shear stress of the flood channel facility experiments. Characteristic features of the lateral profile of the eddy viscosity are also well predicted qualitatively, but in a quantitative sense there is room for improvement. Secondary circulations are shown to be of minor importance in straight uniform compound channel flows.  相似文献   

20.
The characteristics of shear layer structure between the sliding jet and the pool for skimming flows over a vertical drop pool were investigated experimentally, using flow visualization technique and high speed particle image velocimetry. Four series of experiments having different end sill ratios (h/H = 0.12, 0.43, 0.71 and 1.0, where h=end sill height and H=drop height) with various approaching flow discharges were performed to measure the detailed quantitative velocity fields of the shear layer. The mean velocities and turbulence properties were obtained by ensemble averaging the repeated measurements. From the velocity profiles, it is found that the growth of the shear layer in the downward direction as the jet slides down the pool represents the momentum exchange. Analyzing the distribution of measured velocity, the similarity profile of the mean velocity at different cross sections along the shear layer was obtained. The proposed characteristic scales provided unique similarity profiles having promising regression coefficient. The selection of these characteristic scales is also discussed. Further, the spatial variations of mean velocity profiles, turbulence intensities, in-plane turbulent kinetic energy, and Reynolds shear stress were also elucidated in detail. The imperative observation is that the Reynolds shear stress dominates the major part along the shear layer as compared to the viscous shear stress. The study also provides an insight into the flow phenomena through the velocity and turbulent characteristics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号