首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A general approach has been established to assess the undrained stress-strain curve and effective stress path under monotonic loading from drained triaxial tests. An appropriate formulation of a drained and drained rebounded (i.e., overconsolidated) triaxial test response is developed that, in turn, allows the assessment of developing liquefaction and the undrained behavior of saturated sands. The formulation presented is based upon reported experimental drained test results that were obtained from different investigators using different testing techniques. This formulation is a function of the confining pressure and basic properties of the sand, such as relative density, uniformity coefficient, and particle shape (roundness), which can be obtained from visual inspection. The approach is verified by comparing predicted and reported (observed) undrained behavior. The developed formulas allow one to predict the potential of sand to liquefy, the type of liquefaction, the peak and residual strength values, as well as the whole undrained stress-strain curve and effective stress path. The simplicity of this approach makes it an attractive general method to characterize the undrained behavior of sands in a preliminary analysis with no need to run sophisticated experimental tests.  相似文献   

2.
The postcyclic reconsolidation response of low-plastic Fraser River silt was examined using laboratory direct simple shear testing. Specimens of undisturbed and reconstituted natural low-plastic Fraser River silt and reconstituted quartz powder, initially subjected to constant-volume cyclic loading under different cyclic stress ratios (CSRs) and then reconsolidated to their initial effective stresses (σvo′), were specifically investigated. The volumetric strains during postcyclic reconsolidation (εv-ps) were noted to generally increase with the maximum cyclic excess pore-water pressure (Δumax) and maximum cyclic shear strain experienced by the specimens during cyclic loading. The values of εv-ps and maximum cyclic excess pore-water pressure ratio (ru-max) were observed to form a coherent relationship regardless of overconsolidation effects, particle fabric, and initial (precyclic) void ratio of the soil. The specimens with high ru-max suffered significantly higher postcyclic reconsolidation strains; εv-ps ranging between 1.5 and 5% were noted when ru-max>0.8. The observed εv-ps versus ru-max relationship, when used in combination with the observed dependence of cyclic excess pore-water pressure on CSR and number of load cycles, seems to provide a reasonable approach to estimate postcyclic reconsolidation strains of low-plastic silt.  相似文献   

3.
An anisotropic constitutive model was recently presented for describing the stress–strain behavior of granular materials with considerations for the initial and induced anisotropy. The model was developed within the framework of a microstructural theory known as the sliding–rolling theory. The resulting model falls within the definition of multimechanism models. The model was shown to satisfactorily represent the drained and undrained behaviors under monotonic loading. The framework used in the model allows extension to describe the behavior under cyclic loading, which is the subject of the present paper. Specifically, the model is further developed for representing the undrained behavior of granular materials under one- and two-way cyclic loading, some of which cause liquefaction resulting in large strain accumulations and the others lead to limited pore pressure and strain accumulations. The validity of the model is verified using triaxial data on Nevada sand.  相似文献   

4.
Pore Pressure Generation of Silty Sands due to Induced Cyclic Shear Strains   总被引:2,自引:0,他引:2  
It is well established that the main mechanism for the occurrence of liquefaction under seismic loading conditions is the generation of excess pore water pressure. Most previous research efforts have focused on clean sands, yet sand deposits with fines are more commonly found in nature. Previous laboratory liquefaction studies on the effect of fines on liquefaction susceptibility have not yet reached a consensus. This research presents an investigation on the effect of fines content on excess pore water pressure generation in sands and silty sands. Multiple series of strain-controlled cyclic direct simple shear tests were performed to directly measure the excess pore water pressure generation of sands and silty sands at different strain levels. The soil specimens were tested under three different categories: (1) at a constant relative density; (2) at a constant sand skeleton void ratio; and (3) at a constant overall void ratio. The findings from this study were used to develop insight into the behavior of silty sands under undrained cyclic loading conditions. In general, beneficial effects of the fines were observed in the form of a decrease in excess pore water pressure and an increase in the threshold strain. However, pore water pressure appears to increase when enough fines are present to create a sand skeleton void ratio greater than the maximum void ratio of the clean sand.  相似文献   

5.
Cyclic loading has been known to induce fluid flow and thus mechanotransduction in bones. In the past, four-point bending tests have been used exclusively in studying fluid flow in bones. In order to better understand the mechanism of deformation and fluid flow under loading, compression tests were done on trabecular bone specimens under drained and undrained conditions. In the drained tests, the volume change was observed, whereas in the undrained tests, excess pore fluid pressure was measured. Cyclic loading tests were conducted in addition to monotonic loading tests to observe the permanent volume change or excess pore fluid pressure with loading cycles. A fast loading rate gave a sharp rise in the excess fluid pressure compared to a slow loading rate. The strength and stiffness of the specimens appeared to deteriorate with an increased speed of loadings, but there was no appreciable difference between the results obtained from drained and undrained tests. The drained and undrained tests as described allowed a better understanding of bone behavior under loadings for a coupled stress-flow analysis.  相似文献   

6.
The shearing behavior of saturated silty soils has been examined extensively by performing undrained and partially drained (the upper drainage valve of the shear box was open during shearing) ring-shear tests on mixtures of a sandy silt with different loess contents. By performing tests at different initial void ratios, the shear behavior of these silty soils at different initial void ratios is presented and discussed. Undrained-shear-test results showed that the liquefaction phenomena in ring-shear tests were limited within the shear zone; for a given void ratio or interfine void ratio, both the peak and steady-state shear strengths decreased with increase of loess content. The partially drained shear tests revealed that a great reduction in the shear strength could result after the shear failure, due to the buildup of excess pore-water pressure within the shear zone; the magnitude of reduction in shear strength after failure was affected by the initial void ratio, the shear speed after failure, as well as the loess content in the sample. For a given void ratio or interfine void ratio, with increase of loess content, the drained peak shear strength became smaller, while the brittleness index became greater. It was also found that due to localized shearing, the permeability of the soil within the shear box after drained shearing could be three orders of magnitude smaller than before shearing.  相似文献   

7.
Experimental data to study the effect of loading mode on the strain softening and instability behavior of sand under plane-strain conditions are presented in this paper. A new plane-strain apparatus was adopted to conduct K0 consolidated drained and undrained tests under both deformation-controlled and load-controlled loading modes. The drained behavior of very loose and medium dense sand and the undrained behavior of very loose sand under plane-strain conditions were characterized. The test results show that the loading mode affects the postpeak behavior and controls whether strain softening or instability will occur in the postpeak region. Shear bands occurred in tests conducted on medium dense sand, but not in tests for very loose sand. The failure line and critical state line are not affected by the loading mode. The study also shows that the concept of a unique “ultimate state” for both dense and loose sand as previously established based on conventional drained triaxial tests is not supported by the plane-strain data.  相似文献   

8.
Stress Dilatancy and Fabric Dependencies on Sand Behavior   总被引:2,自引:0,他引:2  
A stress dilatancy model with embedded microstructural information, originally developed by the writers, is used to illustrate the pivotal importance of dilatancy and fabric on the behavior of sand. Fabric, as a second-order tensor, enters into the stress dilatancy equation obtained from a microscopic analysis of an ensemble of rigid particles. Model simulations of sand behavior are carried out in triaxial stress conditions along strain paths with varying degrees of controlled dilation (or compaction) including isochoric deformations as a particular case. Under particular strain paths and fabric conditions, it is shown that a relatively dense sand can succumb to instability or liquefaction under other than isochoric (undrained) conditions. This phenomenon is in accord with laboratory experiments in which dilation or compaction is controlled by modulating the amount of water flowing in or out of a sand specimen during shearing. Mixed drained–undrained loading paths are also simulated with particular reference to fabric dependence at a fixed void ratio. Model simulations capture most of the observed characteristics of sand response, such as instability and asymptotic behavior under various conditions.  相似文献   

9.
It is well known that the resistance to liquefaction of a saturated sand decreases sharply when it has been presheared, either cyclically or quasi statically, beyond a threshold value. The possible mechanism is discussed in light of recent findings on the microstructural anisotropy developed in preshearing (induced anisotropy). A columnlike structure, through which applied stress is mainly transmitted, grows parallel to the major principal stress direction in the strain hardening process. Voids, randomly distributed at first, are also connected in series between the columnlike structures. The anisotropic structure can carry the increasing stress as long as the major stress is applied parallel to the elongation direction of the structure. However, it becomes extremely unstable when the major stress is rotated. The excess pore-water pressure increases markedly under undrained cyclic loading, particularly when the connected voids are stressed perpendicular to their elongation direction. This is the reason why once liquefied sand sharply loses liquefaction resistance in a subsequent reliquefaction test.  相似文献   

10.
Natural soil deposits and man-made earth structures exhibit complicated engineering behavior that is influenced by factors such as the stress level and drainage conditions. The stress conditions within a soil structure vary greatly, ranging from very low to very high values, due to the dead weight, loading and boundary conditions. Saturated sand deposits that exhibit drained conditions under static loading become undrained when subject to earthquake excitations. The Pastor–Zienkiewicz–Chan model has demonstrated considerable success in describing the inelastic behavior of soils under isotropic monotonic and cyclic loadings, including liquefaction and cyclic mobility. This study proposed modifications to the Pastor–Zienkiewicz–Chan model so that effects of stress level and densification behavior are simulated. The proposed model suggested that the angle of internal friction, elastic and plastic moduli are dependent on the pressure levels. Relevant modifications were made to incorporate a power term of mean effective stress on the loading plastic modulus so that a stress-level dependent volume change is obtained in combination with the stress-dilatancy relationship. To better simulate cyclic loading with reference to densification behavior, an exponential term of plastic volumetric strain is included for the unloading and reloading plastic moduli. A total of 11 parameters are needed for monotonic loading, whereas 15 parameters are needed in describing the cyclic behavior. The model simulations were compared with undrained and drained triaxial test results of several kinds of sand under dense and loose states. The predictive capability for monotonic and cyclic loading conditions was also demonstrated.  相似文献   

11.
This paper provides a new analysis procedure for assessing the lateral response of an isolated pile in saturated sands as liquefaction develops in response to dynamic loading such as that generated during earthquake shaking. This new procedure predicts the degradation in pile response and soil resistance due to the free-field excess porewater pressure generated by the earthquake, along with the near-field excess porewater pressure generated by lateral loading from the superstructure. The new procedure involves the integration of the developing (free- and near-field) porewater pressure in the strain wedge (SW) model analysis. The current SW model, developed to evaluate drained response (a nonlinear three-dimensional model) of a flexible pile in soil, has been extended in this paper to incorporate the undrained response of a laterally loaded pile in liquefied sand. This new procedure has the capability of predicting the response of a laterally loaded isolated pile and the associated modulus of subgrade reaction (i.e., the p–y curve) in a mobilized fashion as a result of developing liquefaction in the sand. Current design procedures assume slight or no resistance for the lateral movement of the pile in the liquefied soil which is a conservative practice. Alternatively, if liquefaction is assessed not to occur, some practitioners take no account of the increased free-field porewater pressure, and none consider the additional near-field porewater pressure due to inertial interaction loading from the superstructure; a practice that is unsafe in loose sands.  相似文献   

12.
Shear strength parameters used in geotechnical design are obtained mainly from the consolidated drained (CD) or consolidated undrained (CU) triaxial tests. However in many field situations, soils are compacted for construction purposes and may not follow the stress paths in CD or CU triaxial tests. In these cases, the excess pore-air pressure during compaction will dissipate instantaneously, but the excess pore-water pressure will dissipate with time. Under this condition, it can be considered that the air phase is drained and the water phase is undrained. This condition can be simulated in a constant water content (CW) triaxial test. The purpose of this paper is to present the characteristics of the shear strength, volume change, and pore-water pressure of a compacted silt during shearing under the constant water content condition. A series of CW triaxial tests was carried out on statically compacted silt specimens. The experimental results showed that initial matric suction and net confining stress play an important role in affecting the characteristics of the shear strength, pore-water pressure, and volume change of a compacted soil during shearing under the constant water content condition. The failure envelope of the compacted silt exhibited nonlinearity with respect to matric suction.  相似文献   

13.
There is considerable uncertainty in the determination of effective stress strength parameters of cemented soils from undrained triaxial tests. Large negative excess pore pressures are generated at relatively large strains (typically 4–5% for cemented silty sand) in isotropically consolidated undrained (CIU) tests, which results in gas coming out of solution during shear and significant variability in the measured peak deviator stress. In this study, different failure criteria for weakly cemented sands were evaluated based on the results of CIU and isotropically consolidated drained triaxial compression tests conducted on samples of artificially cemented sand. The use of = 0 as a failure criterion eliminates the variability between the undrained tests and also ensures that the mobilized failure strength is not based on the highly variable negative excess pore pressures. In addition, the resulting strains to failure are comparable to the strains to failure for the drained tests. Mohr-Coulomb strength parameters thus estimated from the undrained tests are generally lower than strength parameters obtained from drained tests, and the difference between the failure envelopes from undrained tests increases as the level of cementation increases. This divergence is attributed to differences in the stiffness of the cemented soil under the different loading conditions. The stiffness under undrained loading conditions decreases with increasing cementation due to an increase in the generation of positive excess pore pressure at low strains.  相似文献   

14.
Postcyclic Degradation of Strength and Stiffness for Low Plasticity Silt   总被引:1,自引:0,他引:1  
Stress-controlled undrained cyclic triaxial tests followed by strain-controlled monotonic compressive shear tests were carried out on normally consolidated and overconsolidated reconstituted Keuper Marl silt to investigate the strength and stiffness degradation characteristics of a low plasticity silt. Special attention was paid to the changes in undrained strength and deformation modulus after undrained cyclic loading. It was observed that cyclic degradation in stiffness for low plasticity silt is more marked than that of strength, and this tendency increases with increasing overconsolidation ratio. It was found that a previously proposed model for predicting postcyclic degradation in strength and stiffness of normally consolidated fine-grained soils could be applied to that of overconsolidated silt but not however to the postcyclic degradation in Young’s modulus. Thus, an attempt was made to correlate postcyclic degradation of overconsolidated silt to the equivalent cyclic shear strain instead of the normalized excess pore pressure. It was concluded that cyclic shear strain was a better parameter than cyclic-induced excess pore pressure for correlating the postcyclic stiffness degradation not only for normally consolidated but also for overconsolidated silt.  相似文献   

15.
A general, three-dimensional formulation of the elastoplastic refined Superior sand constitutive model is presented. The model is aimed at realistic simulation of liquefaction phenomena occurring in loose saturated granular materials under monotonic static loading. The isotropic hardening/softening is related to plastic deformation and distance to a reference yield surface. The nonassociated flow rule is used with the closed yield surface introduced previously in the Superior sand model. The refined model accounts for the different response of materials with different deposition densities. The model prediction of drained and undrained plane-strain compression is presented and compared with the response in triaxial compression/extension loading. Static and kinematic instability states also are discussed.  相似文献   

16.
Saturation and Preloading Effects on the Cyclic Behavior of Sand   总被引:3,自引:0,他引:3  
In order to study pore water pressure response and liquefaction characteristics of sand, which has previously experienced liquefaction, two series of cyclic triaxial tests were run on medium dense sand specimens. In the first test series the influence of the soil saturation under undrained cyclic loading has been studied. It summarizes results of cyclic triaxial tests performed on Hostun-RF sand at various values of the Skempton’s pore-pressure coefficient. Analysis of experimental results gives valuable insights on the effect of soil saturation on sand response to undrained cyclic paths. In the second series of tests, the preloading influence on the resistance to the sands liquefaction has been realized on samples at various histories of loading. It was found that a large preloading induces a reduction of the resistance of sands to liquefaction.  相似文献   

17.
In order to simulate the effect of drainage on soils adjacent to gravel drains that are installed as countermeasure against liquefaction, several series of cyclic triaxial tests were performed on saturated sands under partially drained conditions. The condition of partial drainage under cyclic loading was simulated in the laboratory using triaxial testing equipment installed with a drainage control valve to precisely regulate the volume of water being drained from test specimens. Effects of both drainage conditions and loading frequencies on cyclic response were incorporated through the coefficient of drainage effect, α*. Experimental results showed that for sand exhibiting strain softening, the partially drained response was controlled by the critical effective stress ratio while for sand showing strain hardening behavior, the controlling factor was the phase transformation stress ratio. Moreover, test results indicated that the minimum liquefaction resistance under partially drained conditions can be used as a parameter to describe the liquefaction resistance of sands improved by the gravel drain method. From these results, a simplified procedure for designing gravel drains based on the factor of safety (FL) concept was proposed.  相似文献   

18.
The results from an experimental study on sands with high nonplastic silt content are presented. Drained and undrained triaxial compression tests, undrained cyclic triaxial tests, and drained∕undrained instability tests were performed on specimens of loose Nevada sand with 40% silt content. The behavior was observed to be somewhat different from previously published tests with sands at lower silt content. The greater silt content appears to provide a more volumetrically contractive response throughout the entire stress-strain curve. However, some aspects of the response were similar to sands with lower silt content. Monotonic undrained tests indicated “reverse” behavior, i.e., static liquefaction occurred at low confining pressures and increasing dilatant volume-change tendency was observed with increasing confining pressure. Analyzing the results using the concepts of steady state resulted in a unique steady-state line only when undrained tests were sheared from the same isotropic compression line. When specimens of different initial densities were tested at the same initial confining pressures, the resulting steady-state points did not fall on the same steady-state line.  相似文献   

19.
Diagnostic curve methods are developed for simultaneously identifying consolidation coefficient, final settlement, and ratio of top and bottom excess pore-water pressures from observed settlements, in the case of linear excess pore-water pressure. Simple equations are also proposed for estimating consolidation coefficient and final settlement. The proposed methods and equations are applicable for any type of linear loading or drainage condition (one-way or two-way drainage). Solutions for pore-water pressure distribution and transient settlement of clay layers under linear loading of pore-water pressure with one-way drainage are also developed, which are used in the development of the methods. The proposed methods do not require full settlement data for the identification of parameters and the parameters can be identified from only initial but adequate settlement data.  相似文献   

20.
Failure and Dilatancy Properties of Sand at Relatively Low Stresses   总被引:1,自引:0,他引:1  
Analysis of geotechnical problems concerned by low confinement such as design of shallow foundations and analysis of slope stability and soil liquefaction requires modeling of the soil behavior at low stresses. This note includes a laboratory study of the behavior of Hostun RF sand at low cell pressure (20–50?kPa). Isotropic and triaxial compression drained tests were performed. Drained tests show that both failure and dilatancy angles at low stresses are stress dependent. The contractive/dilative phase transition is observed for loose sand, which may result from the overconsolidated nature of this sand for low values of cell pressure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号