首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Laterally spreading nonliquefied crusts can exert large loads on pile foundations causing major damage to structures. While monotonic load tests of pile caps indicate that full passive resistance may be mobilized by displacements on the order of 1–7% of the pile cap height, dynamic centrifuge model tests show that much larger relative displacements may be required to mobilize the full passive load from a laterally spreading crust onto a pile group. The centrifuge models contained six-pile groups embedded in a gently sloping soil profile with a nonliquefied crust over liquefiable loose sand over dense sand. The nonliquefied crust layer spread downslope on top of the liquefied sand layer, and failed in the passive mode against the pile foundations. The dynamic trace of lateral load versus relative displacement between the “free-field” crust and pile cap is nonlinear and hysteretic, and depends on the cyclic mobility of the underlying liquefiable sand, ground motion characteristics, and cyclic degradation and cracking of the nonliquefied crust. Analytical models are derived to explain a mechanism by which liquefaction of the underlying sand layer causes the soil-to-pile-cap interaction stresses to be distributed through a larger zone of influence in the crust, thereby contributing to the softer load transfer behavior. The analytical models distinguish between structural loading and lateral spreading conditions. Load transfer relations obtained from the two analytical models reasonably envelope the responses observed in the centrifuge tests.  相似文献   

2.
This paper presents the results of six large-scale centrifuge model tests that were performed to study the effect of relative density and thickness of sand layers on the amount of settlement and lateral spreading. The models included a “river” channel with clay flood banks underlain by layers of loose and dense sand of variable thickness, and a bridge abutment surcharge on one of the banks. The model container was tilted to provide an overall slope to the model. Each model was subjected to three or four significant ground motion events, which were obtained by scaling the amplitude of recordings of the Kobe (1995) and Loma Prieta (1989) earthquakes. Several measurements of acceleration, pore water pressure, settlement, and lateral movement are presented. The liquefaction potential index and a deformation index, which combine the influences of depth, density, and layer thickness, were found to correlate reasonably well with liquefaction induced settlements and lateral deformations for the range of models tested and indicate that centrifuge results are consistent with field observations.  相似文献   

3.
This paper reports results of a full-scale field test to assess the performance of dilute colloidal silica stabilizer in reducing the settlement of liquefiable soil. Slow injection methods were used to treat a 2-m-thick layer of liquefiable sand. Eight injection wells were installed around the perimeter of the 9-m-diameter test area and 8% by weight colloidal silica grout was slowly injected into the upper 2?m of a 10-m-thick layer of liquefiable sand. A central extraction well was used during grout injection to direct the flow of the colloidal silica towards the center of the test area. Details of the field injection are described. Subsequently, the injection wells were used to install explosive charges and liquefaction was induced by blasting. After blasting, approximately 0.3?m of settlement occurred versus 0.5?m of settlement in a nearby untreated area. The mechanism of improvement is thought to be bonding between the colloidal silica and the individual sand particles; the colloidal silica gel encapsulates the soil structure and maintains it during dynamic loading.  相似文献   

4.
Mitigation of liquefaction potential in loose granular soil can theoretically be achieved through permeation and subsequent gelation of dilute colloidal silica stabilizer. However, practical application of this technique requires efficient and adequate delivery of the stabilizer to the liquefiable soil prior to gelation. The purpose of this research was to evaluate colloidal silica transport mechanisms and to determine if an adequate concentration can be delivered to a soil column prior to gelation. The laboratory work consisted of grouting 15 short (0.9 m) columns tests packed with Nevada No. 120, Ottawa 20/30, or graded silty sand to identify the variables that influence stabilizer transport through porous media. It was found that colloidal silica can be successfully delivered through 0.9-m columns packed with loose sand efficiently and in an adequate concentration to mitigate the liquefaction potential. Transport occurs primarily by advection with limited hydrodynamic dispersion, so Darcy’s law can be used to predict flow. The Kozeny-Carmen equation can be used to include the effect of increasing viscosity on transport by incorporating the power law mixing rule of Todd. The primary variables influencing stabilizer transport were found to be the viscosity of the colloidal silica stabilizer, the hydraulic gradient, and the hydraulic conductivity of the liquefiable soil.  相似文献   

5.
Subsurface Characterization at Ground Failure Sites in Adapazari, Turkey   总被引:4,自引:0,他引:4  
Ground failure in Adapazari, Turkey during the 1999 Kocaeli earthquake was severe. Hundreds of structures settled, slid, tilted, and collapsed due in part to liquefaction and ground softening. Ground failure was more severe adjacent to and under buildings. The soils that led to severe building damage were generally low plasticity silts. In this paper, the results of a comprehensive investigation of the soils of Adapazari, which included cone penetration test (CPT) profiles followed by borings with standard penetration tests (SPTs) and soil index tests, are presented. The effects of subsurface conditions on the occurrence of ground failure and its resulting effect on building performance are explored through representative case histories. CPT- and SPT-based liquefaction triggering procedures adequately identified soils that liquefied if the clay-size criterion of the Chinese criteria was disregarded. The CPT was able to identify thin seams of loose liquefiable silt, and the SPT (with retrieved samples) allowed for reliable evaluation of the liquefaction susceptibility of fine-grained soils. A well-documented database of in situ and index testing is now available for incorporating in future CPT- and SPT-based liquefaction triggering correlations.  相似文献   

6.
Liquefaction Potential Index: Field Assessment   总被引:2,自引:0,他引:2  
Cone penetration test (CPT) soundings at historic liquefaction sites in California were used to evaluate the predictive capability of the liquefaction potential index (LPI), which was defined by Iwasaki et al. in 1978. LPI combines depth, thickness, and factor of safety of liquefiable material inferred from a CPT sounding into a single parameter. LPI data from the Monterey Bay region indicate that the probability of surface manifestations of liquefaction is 58 and 93%, respectively, when LPI equals or exceeds 5 and 15. LPI values also generally correlate with surface effects of liquefaction: Decreasing from a median of 12 for soundings in lateral spreads to 0 for soundings where no surface effects were reported. The index is particularly promising for probabilistic liquefaction hazard mapping where it may be a useful parameter for characterizing the liquefaction potential of geologic units.  相似文献   

7.
Tensile Strength Characteristics of Unsaturated Sands   总被引:5,自引:0,他引:5  
Tensile strength characteristics of unsaturated sands are examined through a combined theoretical and experimental study. The characteristics of tensile strength in all three water retention regimes of pendular, funicular, and capillary are examined. A simple direct tensile strength apparatus is employed to determine tensile strength for sands with a broad range of particle sizes from silty sand to fine sand and medium sand over a full range of degree of saturation. Tensile strength characteristic curves (TSCC) are established experimentally for these sands and are used to validate the existing theories for tensile strength in the pendular regime. The TSCC for sand characteristically exhibits two zeros at 0 and near 100% saturation, and two peak values occurring in the pendular and capillary regimes, respectively. A minimum tensile strength is observed in the dense fine sand, indicating that either water bridges or pore pressure contributes exclusively to the tensile strength in the funicular regime of this sand. The maximum tensile strength for the silty sand is 1,448?Pa, the fine sand is 1,416?Pa, and the medium sand is 890?Pa. Comparison between the soil–water characteristic curves obtained for these sands indicates that the peak tensile strength in the capillary regime is highly correlated to the air-entry pressure. Photographs of the failure surfaces clearly delineate distinct geometric characteristics for different water retention regimes. Analysis of the patterns of failure surfaces in different water retention regimes indicates that the effective stress principle is valid for tensile stress failure in unsaturated sands.  相似文献   

8.
Liquefaction of granular soil deposits is one of the major causes of loss resulting from earthquakes. The accuracy in the assessment of the likelihood of liquefaction at a site affects the safety and economy of the design. In this paper, curves of cyclic resistance ratio (CRR) versus cone penetration test (CPT) stress-normalized cone resistance qc1 are developed from a combination of analysis and laboratory testing. The approach consists of two steps: (1) determination of the CRR as a function of relative density from cyclic triaxial tests performed on samples isotropically consolidated to 100 kPa; and (2) estimation of the stress-normalized cone resistance qc1 for the relative densities at which the soil liquefaction tests were performed. A well-tested penetration resistance analysis based on cavity expansion analysis was used to calculate qc1 for the various soil densities. A set of 64 cyclic triaxial tests were performed on specimens of Ottawa sand with nonplastic silt content in the range of 0–15% by weight, and relative densities from loose to dense for each gradation, to establish the relationship of the CRR to the soil state and fines content. The resulting (CRR)7.5-qc1 relationship for clean sand is consistent with widely accepted empirical relationships. The (CRR)7.5-qc1 relationships for the silty sands depend on the relative effect of silt content on the CRR and qc1. It is shown that the cone resistance increases at a higher rate with increasing silt content than does liquefaction resistance, shifting the (CRR)7.5-qc1 curves to the right. The (CRR)7.5-qc1 curves proposed for both clean and silty sands are consistent with field observations.  相似文献   

9.
The writers backanalyzed 39 well-documented liquefaction-induced lateral spreads in terms of a mobilized strength ratio, su(mob)/σvo′ using the Newmark sliding block method. Based on the inverse analyses results, we found that the backcalculated strength ratios mobilized during lateral spreads can be directly correlated to normalized cone penetration test tip resistance and standard penetration test blow count. Remarkably, Newmark analysis-based strength ratios mobilized during these lateral spreads essentially coincide with liquefied strength ratios backcalculated from liquefaction flow failures. The mobilized strength ratios appear to be independent of the magnitude of lateral displacement (at least for displacements greater than 15?cm) and the strength of shaking (in terms of peak ground acceleration). Furthermore, the mobilized strength ratios backcalculated from these cases appear to be consistent for a given depositional environment and do not appear to be severely impacted by potential water layer formation.  相似文献   

10.
Lateral pile cap tests were performed on a pile cap with three backfills to evaluate the static and dynamic behavior. One backfill consisted of loose silty sand while the other two consisted of 0.91- and 1.82-m-wide dense gravel zones between the pile cap and the loose silty sand. The 0.91- and 1.82-m-wide dense gravel zones increased the lateral resistance by 75 to 150% and 150 to 225%, respectively, relative to the loose silty sand backfill. Despite being thin relative to the overall shear length, the 0.92- and 1.82-m-wide gravel zones increase lateral resistance to approximately 54 and 78%, respectively, of the resistance that would be provided by a backfill entirely composed of dense gravel. The dynamic stiffness for the pile cap with the gravel zones decreased about 10% after 15 cycles of loading, while the damping ratio remained relatively constant with cycling. Dynamic stiffness increased by about 10 to 40% at higher deflections, while the damping ratio decreased from an initial value of about 0.30 to around 0.26 at higher deflections.  相似文献   

11.
Failure and Dilatancy Properties of Sand at Relatively Low Stresses   总被引:1,自引:0,他引:1  
Analysis of geotechnical problems concerned by low confinement such as design of shallow foundations and analysis of slope stability and soil liquefaction requires modeling of the soil behavior at low stresses. This note includes a laboratory study of the behavior of Hostun RF sand at low cell pressure (20–50?kPa). Isotropic and triaxial compression drained tests were performed. Drained tests show that both failure and dilatancy angles at low stresses are stress dependent. The contractive/dilative phase transition is observed for loose sand, which may result from the overconsolidated nature of this sand for low values of cell pressure.  相似文献   

12.
利用振动台进行了在地震激励下冻土、可液化砂土与钢管桩之间的相互作用模拟试验研究.试验设计柔性模型箱装填土体以模拟边界影响,通过配比试验制备混凝土砂浆模拟上覆冻土层,采用饱和砂土作为液化土,利用顶部附加集中质量的方法模拟钢管桩的惯性荷载.试验过程中选取调幅地震波模拟地震激励,通过实时测量桩的应变、桩/冻土位移和砂土内的孔隙水压力等方面的数据,分析冻土层覆盖下砂土的液化情况和与之对应的桩基动力反应情况.试验结果显示:在地基液化发生前,冻土层可以给桩基提供一定的侧向约束,有利于提高其承载力并抑制其侧向变形;然而一旦出现液化,冻土层则可能增强地基液化的趋势,导致桩基承载性能下降.   相似文献   

13.
We document and analyze incidents of liquefaction-induced lateral ground deformation at five sites located in the near-fault region of the 1999 Chi-Chi Taiwan earthquake. Each of the lateral spreads involved cyclic mobility of young alluvial soils towards a free face at creek channels. In each case, the lateral spreading produced relatively modest lateral displacements (approximately 10–200?cm) in parts of the spreads not immediately adjacent to channel slopes. For each site, we present displacement vectors across the spread features, which are based on mapping performed within three weeks of the earthquake. We review the results of detailed subsurface exploration conducted at each site, including cone penetration test soundings, borings with standard penetration testing, and laboratory index tests. We back-analyze the field displacements using recent empirical and semiempirical models and find that the models generally overestimate the observed ground displacements. Possible causes of the models’ overprediction bias include partial drainage of the liquefied soils during shaking, low but measurable plasticity of some of the soils’ fines fraction, and the absence of nonspread sites in the empirical databases used to develop existing empirical and semi-empirical lateral spread displacement prediction models.  相似文献   

14.
Mechanics of Lateral Spreading Observed in a Full-Scale Shake Test   总被引:1,自引:0,他引:1  
This paper examines in detail the mechanics of lateral spreading observed in a full-scale test of a sloping saturated fine sand deposit, representative of liquefiable, young alluvial and hydraulic fill sands in the field. The test was conducted using a 6-m tall inclined laminar box shaken at the base. At the end of shaking, nearly the whole deposit was liquefied, and the ground surface displacement had reached 32 cm. The presented analysis of lateral spreading mechanics utilizes a unique set of lateral displacement results, DH, from three independent techniques. One of these techniques—motion tracking analysis of the experiment video recording—is especially useful as it produced DH time histories for all laminar box rings and a complete picture of the lateral spreading initiation with an unprecedented degree of resolution in time and space. A systematic study of the data identifies the progressive stages of initiation and accumulation of lateral spreading, lateral spread contribution of various depth ranges and sliding zones, their relation to the simultaneous pore pressure buildup, and the soil shear strength response during sliding.  相似文献   

15.
Sand compaction pile (SCP) is a ground improvement technique extensively used to ameliorate liquefaction resistance of loose sand deposits. This paper discusses results of laboratory tests on high-quality undisturbed samples obtained by the in situ freezing method at six sites where foundation soils had been improved with SCP. Inspection of samples revealed that the improved ground was desaturated during the ground improvement. Degree of saturation (Sr) was lower than 77% for the sand piles and 91% for the improved sand layers, while Sr was approximately 100% for improved clayey and silty soils. A good correlation was found between Sr and 5% diameter of the soil; the larger 5% diameter of soils (D5), the lower the degree of saturation. It appeared that the variation of Sr with D5 for soils within a month after the ground improvement work was quite similar in trend to that after more than several years. Degree of saturation of soils after several years was noticeably, but not significantly, higher as compared with that shortly after ground improvement, indicating longevity of air bubbles injected in the improved soil. Undrained cyclic shear tests were also carried out on saturated and unsaturated specimens and effects of desaturation on undrained cyclic shear strength were studied. The test results were summarized in a form of liquefaction resistance with reference to normalized standard penetration test N-value.  相似文献   

16.
In situ capping manages contaminated sediment on-site without creating additional exposure pathways associated with dredging, e.g., sediment resuspension, and potential human exposure during transport, treatment, or disposal of dredged material. Contaminant mass is not immediately removed in sediment capping, which creates concerns over its long-term effectiveness. Groundwater seepage can also decrease the effectiveness of in situ capping. This study compares the effectiveness of commercially available sorbents that can be used to amend sand caps to improve their ability to prevent contaminant migration from the sediments into the bioactive zone. Amendments evaluated include coke, activated carbon, and organic-rich soil. The properties relevant to advective-dispersive transport through porous media (sorption, porosity, dispersivity, and bulk density) are measured for each material, and then used as inputs to a numerical model to predict the flux of 2,4,5-polychlorinated biphenyl (PCB) through a sand cap amended with a thin (1.25-cm) sorbent layer. Systems with and without groundwater seepage are considered. Isolation times provided by the sorbent layers increased with increasing sorption strength and capacity (activated carbon?coke ≈ soil?sand). The effective porosity, dispersivity, and bulk density of the sorbent layer had little effect on cap performance compared to sorption strength (Kf). In the absence of seepage, all sorbents could isolate PCBs in the underlying sediment for times greater than 100?years and would be effective for most cap applications. With groundwater seepage (Darcy velocity = 1?cm/day), activated carbon was the only sorbent that provided contaminant isolation times greater than 60?years. Long isolation times afforded by sorbent-amended caps allow time for inherently slow natural attenuation processes to further mitigate PCB flux.  相似文献   

17.
Pile Response to Lateral Spreads: Centrifuge Modeling   总被引:1,自引:0,他引:1  
The paper presents results of eight centrifuge models of vertical single piles and pile groups subjected to earthquake-induced liquefaction and lateral spreading. The centrifuge experiments, conducted in a slightly inclined laminar box subjected to strong in-flight base shaking, simulate a mild, submerged, infinite ground slope containing a 6-m-thick prototype layer of liquefiable Nevada sand having a relative density of 40%. Two- and three-layer soil profiles were used in the models, with a 2-m-thick nonliquefiable stratum placed below, and in some cases also above the liquefiable Nevada sand. The model piles had an effective prototype diameter, d, of 0.6 m. The eight pile models simulated single end-bearing and floating reinforced concrete piles with and without a reinforced concrete pile cap, and two 2×2 end-bearing pile groups. Bending moments were measured by strain gauges placed along the pile models. The base shaking liquefied the sand layer and induced free field permanent lateral ground surface displacements between 0.7 and 0.9 m. In all experiments, the maximum permanent bending moments, Mmax occurred at the boundaries between liquefied and nonliquefied layers; the prototype measured values of Mmax ranged between about 10 and 300 kN?m. In most cases the bending moments first increased and then decreased during the shaking, despite the continued increase in free field displacement, indicating strain softening of the soil around the deep foundation. The largest values of Mmax were associated with single end-bearing piles in the three-layer profile, and the smallest values of Mmax were measured in the end-bearing pile groups in the two-layer profile. The companion paper further analyzes the Mmax measured in the single pile models, and uses them to calibrate two limit equilibrium methods for engineering evaluation of bending moments in the field. These two methods correspond to cases controlled, respectively, by the pressure of liquefied soil, and by the passive pressure of nonliquefied layers on the pile foundation.  相似文献   

18.
Pore Pressure Generation of Silty Sands due to Induced Cyclic Shear Strains   总被引:2,自引:0,他引:2  
It is well established that the main mechanism for the occurrence of liquefaction under seismic loading conditions is the generation of excess pore water pressure. Most previous research efforts have focused on clean sands, yet sand deposits with fines are more commonly found in nature. Previous laboratory liquefaction studies on the effect of fines on liquefaction susceptibility have not yet reached a consensus. This research presents an investigation on the effect of fines content on excess pore water pressure generation in sands and silty sands. Multiple series of strain-controlled cyclic direct simple shear tests were performed to directly measure the excess pore water pressure generation of sands and silty sands at different strain levels. The soil specimens were tested under three different categories: (1) at a constant relative density; (2) at a constant sand skeleton void ratio; and (3) at a constant overall void ratio. The findings from this study were used to develop insight into the behavior of silty sands under undrained cyclic loading conditions. In general, beneficial effects of the fines were observed in the form of a decrease in excess pore water pressure and an increase in the threshold strain. However, pore water pressure appears to increase when enough fines are present to create a sand skeleton void ratio greater than the maximum void ratio of the clean sand.  相似文献   

19.
This paper provides a new analysis procedure for assessing the lateral response of an isolated pile in saturated sands as liquefaction develops in response to dynamic loading such as that generated during earthquake shaking. This new procedure predicts the degradation in pile response and soil resistance due to the free-field excess porewater pressure generated by the earthquake, along with the near-field excess porewater pressure generated by lateral loading from the superstructure. The new procedure involves the integration of the developing (free- and near-field) porewater pressure in the strain wedge (SW) model analysis. The current SW model, developed to evaluate drained response (a nonlinear three-dimensional model) of a flexible pile in soil, has been extended in this paper to incorporate the undrained response of a laterally loaded pile in liquefied sand. This new procedure has the capability of predicting the response of a laterally loaded isolated pile and the associated modulus of subgrade reaction (i.e., the p–y curve) in a mobilized fashion as a result of developing liquefaction in the sand. Current design procedures assume slight or no resistance for the lateral movement of the pile in the liquefied soil which is a conservative practice. Alternatively, if liquefaction is assessed not to occur, some practitioners take no account of the increased free-field porewater pressure, and none consider the additional near-field porewater pressure due to inertial interaction loading from the superstructure; a practice that is unsafe in loose sands.  相似文献   

20.
This paper presents experimental results and analysis of six model centrifuge experiments conducted on the 150?g-ton Rensselaer Polytechnic Institute centrifuge to investigate the effect of soil permeability on the response of end-bearing single piles and pile groups subjected to lateral spreading. The models were tested in a laminar box and simulate a mild infinite slope with a liquefiable sand layer on top of a nonliquefiable layer. Three fine sand models consisting of a single pile, a 3×1 pile group, and a 2×2 pile group were tested, first using water as pore fluid, and then repeated using a viscous pore fluid, hence simulating two sands of different permeability in the field. The results were dramatically different, with the three tests simulating a low permeability soil developing 3–6 times larger pile head displacements and bending moments at the end of shaking. Deformation observations of colored sand strips, as well as measurements of sustained negative excess pore pressures near the foundations in the “viscous fluid” experiments, indicated that an approximately inverted conical zone of nonliquefied soil had formed in these tests at shallow depths around the foundation, which forced the liquefied soil in the free field to apply its lateral pressure against a much larger effective foundation area. Additional p-y and limit equilibrium back-analyses support the hypothesis that the greatly increased foundation bending response observed when the soil is less pervious is due to the formation of such inverted conical volume of nonliquefied sand. This study provides evidence of the importance of soil permeability on pile foundations response during lateral spreading for cases when the liquefied deposit reaches the ground surface, and suggests that bending response may be greater in silty sands than in clean sands in the field. Moreover, the observations in this study may serve as basis for realistic practical engineering methods to evaluate pile foundations subjected to lateral spreading and pressure of liquefied soil.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号