首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper discusses the applicability of two simple models for predicting pore water pressure generation in nonplastic silty soil during cyclic loading. The first model was developed by Seed et al. in the 1970s and relates the pore pressure generated to the cycle ratio, which is the ratio of the number of applied cycles of loading to the number of cycles required to cause liquefaction. The second model is the Green-Mitchell-Polito model proposed by Green et al. in 2000, which relates pore pressure generation to the energy dissipated within the soil. Based upon the results of approximately 150 cyclic triaxial tests, the writers show that both models are applicable to silty soils. A nonlinear mixed effects model was used for regression analyses to develop correlations for the necessary calibration parameters. The results show that the trends in both α and pseudoenergy capacity calibration parameters for the Seed et al. and Green et al. pore pressure generation models, respectively, differ significantly for soils containing less than and greater than ~ 35% fines, consistent with the limiting fines content concept.  相似文献   

2.
The postcyclic reconsolidation response of low-plastic Fraser River silt was examined using laboratory direct simple shear testing. Specimens of undisturbed and reconstituted natural low-plastic Fraser River silt and reconstituted quartz powder, initially subjected to constant-volume cyclic loading under different cyclic stress ratios (CSRs) and then reconsolidated to their initial effective stresses (σvo′), were specifically investigated. The volumetric strains during postcyclic reconsolidation (εv-ps) were noted to generally increase with the maximum cyclic excess pore-water pressure (Δumax) and maximum cyclic shear strain experienced by the specimens during cyclic loading. The values of εv-ps and maximum cyclic excess pore-water pressure ratio (ru-max) were observed to form a coherent relationship regardless of overconsolidation effects, particle fabric, and initial (precyclic) void ratio of the soil. The specimens with high ru-max suffered significantly higher postcyclic reconsolidation strains; εv-ps ranging between 1.5 and 5% were noted when ru-max>0.8. The observed εv-ps versus ru-max relationship, when used in combination with the observed dependence of cyclic excess pore-water pressure on CSR and number of load cycles, seems to provide a reasonable approach to estimate postcyclic reconsolidation strains of low-plastic silt.  相似文献   

3.
The cyclic liquefaction resistance of intact medium dense specimens of sands and silts obtained from offshore platform sites was compared to that of specimens reconstituted to the same values of shear wave velocity. The shear wave velocity was measured using a new system that is comprised of torsional piezoelectric ceramic ring transducers mounted in a triaxial cell, a multiwave measuring device, and special watertight connectors. The relationship between cyclic resistance ratio and the number of cycles to liquefaction Nf of intact and reconstituted specimens was compared at the same values of consolidation pressure and shear wave velocity. There was good agreement between cyclic resistance ratios of intact and reconstituted specimens with similar values of shear wave velocity if liquefaction is defined as ? 6% peak-to-peak axial strain. The results of this study support the hypothesis that the cyclic liquefaction resistance of reconstituted specimens may be restored to in situ conditions when their shear wave velocity is restored to in situ values.  相似文献   

4.
Strain-Rate Effect on Soil Secant Shear Modulus at Small Cyclic Strains   总被引:1,自引:0,他引:1  
The effects of the shear strain rate = dγ/dt on the secant shear modulus Gs of three clays and three sands at small cyclic shear strain amplitudes γc under simple shear loading conditions are described. The amplitude γc varied between 0.0003 and 0.02% and between 0.0002 and 0.04 %/s. For all six soils Gs increases with , such that the Gs versus log? data plot approximately along a straight line. The slope of this line is αG=strain-rate shear modulus parameter, while its normalized value αG/Gs = =shear strain-rate modulus factor. For the clays tested αG ranges between 2.5 and 7.5 MPa and between 2.0 and 11.5%. For the sandy soils αG ranges between 0.2 and 3.0 MPa and between 0.2 and 6.0%. Both αG and decrease moderately with increasing γc, i.e., the largest αG and were obtained at the smallest γc. For five soils the families of the normalized modulus reduction curves (Gs/Gmax)–log?γc were constructed, such that each curve pertains to a constant . It was found that has essenlially no effect on the shape of the constant-?(Gs/Gmax)–log?γc curve. A brief review of previous experimental studies is included.  相似文献   

5.
The liquefaction susceptibility of various graded fine to medium saturated sands are evaluated by stress controlled cyclic triaxial laboratory tests. Cyclic triaxial tests are performed on reconstituted specimens having global relative density of 60%. In all cyclic triaxial tests, loading pattern is selected as a sinusoidal wave form with 1.0 Hz frequency and effective consolidation pressure is chosen as 100 kPa. Liquefaction resistance is defined as the required cyclic stress ratio causing initial liquefaction in 10 cycles during the cyclic triaxial test. The results are used to draw conclusions on the effect of the extreme void ratios and void ratio range on the liquefaction resistance of various graded sands.  相似文献   

6.
Probabilistic Models for Cyclic Straining of Saturated Clean Sands   总被引:1,自引:0,他引:1  
A maximum likelihood framework for the probabilistic assessment of postcyclic straining of saturated clean sands is described. Databases consisting of cyclic laboratory test results including maximum shear and postcyclic volumetric strains in conjunction with relative density, number of stress (strain) cycles, and “index” test results were used for the development of probabilistically based postcyclic strain correlations. For this purpose, in addition to the compilation of existing data from literature, a series of stress-controlled cyclic triaxial and simple shear tests were performed on laboratory-constituted saturated clean sand specimens. The variabilities in testing conditions (i.e., type of test, consolidation procedure, confining pressure, rate of loading, etc.) were corrected through a series of correction schemes, the effectiveness of which were later confirmed by the discriminant analyses results. Volumetric and shear strain boundary curves were developed in the cyclic stress ratio versus N1,60,CS or qc,1 domain. In addition to being based on significantly extended and higher quality databases, contrary to the existing judgmentally derived deterministic ones, proposed correlations have formal probabilistic bases, and so provide insight regarding uncertainty of strain predictions or probability of exceeding a target strain value. Probabilistic uses of the proposed correlations were illustrated by three sets of examples. A companion paper applied and calibrated the proposed volumetric strain correlation to semiempirically evaluate postearthquake settlement of level, free-field sites. For the calibration, case history soil profiles, composed of a broad range of sand types and depositional characteristics, shaken by a number of earthquakes, were used. Superior predictions of field settlements by this laboratory data-based cyclic strain assessment approach were concluded to be strongly mutually supportive.  相似文献   

7.
In Situ Measurement of Nonlinear Shear Modulus of Silty Soil   总被引:1,自引:0,他引:1  
A new field test method to evaluate in situ nonlinear shear modulus of soils was developed. The method utilizes a drilled shaft as a cylindrical, axisymmetric source for shear loading of soil at depth. The applicability of the test method was studied by conducting small-scale, prototype experiments at a “calibration” field site in Austin, Texas. Numerous conventional in situ and laboratory measurements were performed to characterize the soil at the field site. The “small-scale” nature of the tests involved using a 381?mm (15?in.) diameter, 3.7?m (12?ft) long drilled shaft. Experimental results from this field study provided an opportunity to compare laboratory and field measurements of the G?log?γ and G/Gmax?log?γ curves. This comparison was used to investigate the accuracy of common procedures relating field and laboratory modulus reduction curves. Nonlinear modulus measurements were performed at depths of 1.8?to?2.1?m (6?to?7?ft) in a silt (ML). The field G/Gmax?log?γ curve for this soil at low confining pressures are in general agreement with the laboratory curve from an intact specimen as well as empirical curves.  相似文献   

8.
We utilize simple shear testing to investigate the volume change of clean sands subject to cyclic loads. We examine the effects of a number of compositional and environmental factors on the vertical strain at 15 uniform shear strain cycles and on the cycle-to-cycle variation of vertical strain. The compositional factor found to principally affect seismic compression susceptibility is relative density. Compositional factors found to not significantly affect cyclic volume change include gradation parameters (mean grain size and uniformity coefficient), particle angularity, soil fabric, mineralogy, and void ratio “breadth” e-emin. An environmental factor found to affect seismic compression susceptibility is confining stress, with volumetric strains decreasing with increasing stress. Environmental factors that do not significantly affect seismic compression susceptibility for clean sands are saturation and age. Stress history can decrease vertical strains from seismic compression for certain conditions, but we find such effects to be insignificant for the levels of overburden stress where compacted fills are typically overconsolidated from compaction-induced stresses. An empirical model is developed to represent the major trends of the data for application in engineering practice, which improves upon an earlier model that is based on a much smaller database and does not account for the aforementioned environmental factors.  相似文献   

9.
The shearing behavior of saturated silty soils has been examined extensively by performing undrained and partially drained (the upper drainage valve of the shear box was open during shearing) ring-shear tests on mixtures of a sandy silt with different loess contents. By performing tests at different initial void ratios, the shear behavior of these silty soils at different initial void ratios is presented and discussed. Undrained-shear-test results showed that the liquefaction phenomena in ring-shear tests were limited within the shear zone; for a given void ratio or interfine void ratio, both the peak and steady-state shear strengths decreased with increase of loess content. The partially drained shear tests revealed that a great reduction in the shear strength could result after the shear failure, due to the buildup of excess pore-water pressure within the shear zone; the magnitude of reduction in shear strength after failure was affected by the initial void ratio, the shear speed after failure, as well as the loess content in the sample. For a given void ratio or interfine void ratio, with increase of loess content, the drained peak shear strength became smaller, while the brittleness index became greater. It was also found that due to localized shearing, the permeability of the soil within the shear box after drained shearing could be three orders of magnitude smaller than before shearing.  相似文献   

10.
This paper discusses the development of a framework for classifying soil using normalized piezocone test (CPTU) data from the corrected tip resistance (qt) and penetration pore-water pressure at the shoulder (u2). Parametric studies for normalized cone tip resistance (Q = qcnet/σv0′) and normalized excess pressures (Δu2/σv0′) as a function of overconsolidation ratio (OCR = σvy′/σv0′) during undrained penetration are combined with piezocone data from clay sites, as well as results from relatively uniform thick deposits of sands, silts, and varietal clays from around the globe. The study focuses on separating the influence of yield stress ratio from that of partial consolidation on normalized CPTU parameters, which both tend to increase Q and decrease the pore pressure parameter (Bq = Δu2/qcnet). The resulting recommended classification chart is significantly different from existing charts, and implies that assessment of data in Q–Δu2/σv0′ space is superior to Q–Bq space when evaluating piezocone data for a range of soil types. Still, there are zones of overlap for silty soils and heavily overconsolidated clays, thus requiring that supplementary information to Q and Δu2/σv0′ be obtained in unfamiliar geologies, including variable rate penetration tests, dissipation tests, CPT friction ratio, or soil sampling.  相似文献   

11.
Shear Strength of Fiber-Reinforced Sands   总被引:3,自引:0,他引:3  
Soil reinforcement using discrete randomly distributed fibers has been widely investigated over the last 30 years. Several models were suggested to estimate the improvement brought by fibers to the shear strength of soils. The objectives of this paper are to (1) supplement the data available in the literature on the behavior of fiber-reinforced sands; (2) study the effect of several parameters which are known to affect the shear strength of fiber-reinforced sands; and (3) investigate the effectiveness of current models in predicting the improvement in shear strength of fiber-reinforced sand. An extensive direct shear testing program was implemented using coarse and fine sands tested with three types of fibers. Results indicate the existence of a fiber-grain scale effect which is not catered for in current prediction models. A comparison between measured and predicted shear strengths indicates that the energy dissipation model is effective in predicting the shear strength of fiber-reinforced specimens in reference to the tests conducted in this study. On the other hand, the effectiveness of the predictions of the discrete model is affected by the parameters of the model, which may depend on the test setup and the procedure used for mixing the fibers.  相似文献   

12.
Threshold Shear Strain for Cyclic Pore-Water Pressure in Cohesive Soils   总被引:1,自引:0,他引:1  
Threshold shear strain for cyclic pore-water pressure, γt, is a fundamental property of fully saturated soils subjected to undrained cyclic loading. At cyclic shear strain amplitude, γc, larger than γt residual cyclic pore-water pressure changes rapidly with the number of cycles, N, while at γc<γt such changes are negligible even at large N. To augment limited experimental data base of γt in cohesive soils, five values of γt for two elastic silts and a clay were determined in five special cyclic Norwegian Geotechnical Institute (NGI)-type direct simple shear (NGI-DSS), constant volume equivalent undrained tests. Threshold γt was also tested on one sand, with the results comparing favorably to published data. The test results confirm that γt in cohesive soils is larger than in cohesionless soils and that it generally increases with the soil’s plasticity index (PI). For the silts and clay having PI=14–30, γt = 0.024–0.06% was obtained. Limited data suggest that γt in plastic silts and clays practically does not depend on the confining stress. The concept of evaluating pore water pressures from the NGI-DSS constant volume test and related state of stresses are discussed.  相似文献   

13.
This paper presents the results of a systematic laboratory investigation on the static behavior of silica sand containing various amounts of either plastic or nonplastic fines. Specimens were reconstituted using a new technique suitable for element testing of homogeneous specimens of sands containing fines deposited in water (e.g., alluvial deposits, hydraulic fills, tailings dams, and offshore deposits). The fabric of sands containing fines was examined using the environmental scanning electron microscope (ESEM). Static, monotonic, isotropically consolidated, drained triaxial compression tests were performed to evaluate the stress-strain-volumetric response of these soils. Piezoceramic bender element instrumentation was developed and integrated into a conventional triaxial apparatus; shear-wave velocity measurements were made to evaluate the small-strain stiffness of the sands tested at various states. The intrinsic parameters that characterize critical state, dilatancy, and small-strain stiffness of clean, silty, and clayey sands were determined. All aspects of the mechanical behavior investigated in this study (e.g., stress-strain-volumetric response, shear strength, and small-strain stiffness) are affected by both the amount and plasticity of the fines present in the sand. Microstructural evaluation using the ESEM highlighted the importance of soil fabric on the overall soil response.  相似文献   

14.
The contribution of transverse ribs to the soil-geogrids interaction under pullout mode has been well documented. However, the contribution of transverse ribs to the soil-geogrid interaction under direct shear mode is, at best, unclear. Consequently, this paper presents the results of a comprehensive direct shear testing program aimed at evaluating the contribution of transverse ribs to the interface shear. The direct shear tests involved Ottawa sand and several polyester geogrids with a variety of material tensile strength, percent open area, and aperture pattern. The test results show that the shear strength of sand-geogrid interfaces under direct shear mode is significantly higher than that of sand-geotextile interfaces. Analysis of shear displacement-strength response of the interfaces indicates that, in addition to interface shear components due to sand-rib friction and sand-sand shear at the location of the openings, the transverse ribs provide additional contribution to the overall sand-geogrid interface resistance. Specifically, analysis of the results reveals that the transverse ribs of the geogrid used in this study provide approximately 10% of interface shear resistance. This contribution is positively correlated with the tensile strength and the stiffness of geogrid ribs, but is negatively correlated with the percent open area of the geogrid. A simple model is proposed to quantify the contribution of transverse ribs to the interface shear strength under direct shear mode.  相似文献   

15.
This paper presents experimental data on the variation of lateral earth pressure against a nonyielding retaining wall due to soil filling and vibratory compaction. Air-dry Ottawa sand was placed in five lifts and each lift was compacted to achieve a relative density of 75%. Each compacted lift was 0.3?m thick. The instrumented nonyielding wall facility at National Chiao Tung University in Taiwan was used to investigate the effects of vibratory compaction on the change of stresses at the soil-wall interface. Based on the experimental data it has been found that, for a compacted backfill, the vertical overburden pressure can also be properly estimated with the traditional equation σv = γz. The effects of vibratory compaction on the vertical pressure in the backfill were insignificant. On the vertical nonyielding wall, extra horizontal earth pressure was induced by vibratory compaction. After compaction, the lateral earth pressure measured near the top of the wall was almost identical to the passive Rankine pressure. It is concluded that as the cyclic compacting stress applied on the surface of the backfill exceeded the ultimate bearing capacity of the foundation soil, a shear failure zone would develop in the uppermost layer of the backfill. For a soil element under lateral compression, the vertical overburden pressure remained unchanged, and the horizontal stress increased to the Rankine passive pressure. It was also found that the compaction-influenced zone rose with the rising compaction surface. The horizontal earth pressure measured below the compaction-influenced zone converged to the Jaky state of stress.  相似文献   

16.
Liquefaction of granular soil deposits is one of the major causes of loss resulting from earthquakes. The accuracy of the liquefaction potential assessment at a site affects the safety and economy of an engineering project. Although shear-wave velocity (Vs)-based methods have become prevailing, very few works have addressed the problem of the reliability of various relationships between liquefaction resistance (CRR) and Vs used in practices. In this paper, both cyclic triaxial and dynamic centrifuge model tests were performed on saturated Silica sand No. 8 with Vs measurements using bender elements to investigate the reliability of the CRR-Vs1 correlation previously proposed by the authors. The test results show that the semiempirical CRR-Vs1 curve derived from laboratory liquefaction test of Silica sand No. 8 can accurately classify the (CRR,Vs1) database produced by dynamic centrifuge test of the same sand, while other existing correlations based on various sandy soils will significantly under or overestimate the cyclic resistance of this sand. This study verifies that CRR-Vs1 curve for liquefaction assessment is strongly soil-type dependent, and it is necessary to develop site-specific liquefaction resistance curves from laboratory cyclic tests for engineering practices.  相似文献   

17.
This study examines the postliquefaction flow failure mechanism, in which shear strain develops due to seepage upward during the redistribution of excess pore water pressure after an earthquake. The mechanism is addressed as both a soil element and a boundary value problem. Triaxial tests that reproduce the stress state of a gentle slope subjected to upward pore water inflow were performed, with the results showing that shear strain can increase significantly after the stress state reaches the failure line. In addition, when subject to equivalent volumetric strain, shear strain is considerably larger in loose sand conditions than in dense sand. Compared with consolidated and drained test results, the dilatancy coefficient β, which indicates the rate of dilation, is the same as that obtained from pore water inflow tests. Torsional hollow cylinder tests were also performed to ascertain the limit of dilation of sand specimens. It was found that the β values are nonlinear in behavior. In addition, a postliquefaction flow failure mechanism based on one-dimensional consolidation theory and shear deformation behavior as a result of pore water inflow is proposed.  相似文献   

18.
Dynamic loading due to earthquakes is made up of very complicated combinations of different types of waves including compressive waves, shear waves, etc. If a soil specimen is subjected to a combined longitudinal and torsional excitation, significant degradation of the specimen occurs, wherein the modulus is reduced and the damping increased more than for single excitation. This paper presents equations based on test results on clean sands for the determination of the shear modulus and damping of sandy soils for single and combined sinusoidal loadings. From the equations, the degree of specimen degradation can be determined, as well as the threshold strain ratio needed for the degradation to occur. The dynamic properties obtained from combined loadings will be more representative of actual field conditions than those from single-loading conditions.  相似文献   

19.
Small-scale tests were carried out on a monopile and fin piles to determine the effect the length of fins had upon the lateral displacement of cyclically loaded piles. A variety of loading conditions were applied to model piles in a dense sand by using a mechanical loading system. Ten thousand cycles were used in each test to represent 20 years of environmental loading on offshore structures. Variables included the magnitude, frequency, and direction of the load; the type of pile tip; and the length of the fins. The reduction in pile head displacement was used as a measure of the efficiency of the fins. The tests show that the fins reduced the lateral displacement by at least 50% after 10,000 cycles.  相似文献   

20.
Shear strength parameters used in geotechnical design are obtained mainly from the consolidated drained (CD) or consolidated undrained (CU) triaxial tests. However in many field situations, soils are compacted for construction purposes and may not follow the stress paths in CD or CU triaxial tests. In these cases, the excess pore-air pressure during compaction will dissipate instantaneously, but the excess pore-water pressure will dissipate with time. Under this condition, it can be considered that the air phase is drained and the water phase is undrained. This condition can be simulated in a constant water content (CW) triaxial test. The purpose of this paper is to present the characteristics of the shear strength, volume change, and pore-water pressure of a compacted silt during shearing under the constant water content condition. A series of CW triaxial tests was carried out on statically compacted silt specimens. The experimental results showed that initial matric suction and net confining stress play an important role in affecting the characteristics of the shear strength, pore-water pressure, and volume change of a compacted soil during shearing under the constant water content condition. The failure envelope of the compacted silt exhibited nonlinearity with respect to matric suction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号