首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
A new composite chitosan biosorbent was prepared by coating chitosan, a glucosamine biopolymer, onto ceramic alumina. The composite bioadsorbent was characterized by high-temperature pyrolysis, porosimetry, scanning electron microscopy, and X-ray photoelectron spectroscopy. Batch isothermal equilibrium and continuous column adsorption experiments were conducted at 25 degrees C to evaluate the biosorbent for the removal of hexavalent chromium from synthetic as well as field samples obtained from chrome plating facilities. The effect of pH, sulfate, and chloride ion on adsorption was also investigated. The biosorbent loaded with Cr(VI) was regenerated using 0.1 M sodium hydroxide solution. A comparison of the results of the present investigation with those reported in the literature showed that chitosan coated on alumina exhibits greater adsorption capacity for chromium(VI). Further, experimental equilibrium data were fitted to Langmuir and Freundlich adsorption isotherms, and values of the parameters of the isotherms are reported. The ultimate capacity obtained from the Langmuir model is 153.85 mg/g chitosan.  相似文献   

2.
The batch removal of Cr(VI) from simulated wastewater with Fe@Fe2O3 core-shell nanowires (FCSNs) was investigated in this study. Itwas found that each gram of the FCSNs could remove 7.78 mg of Cr(VI) from simulated wastewater containing 8.0 mg L(-1) of Cr(VI) with an initial pH of 6.5 at room temperature. The Freundlich adsorption isotherm was applicable to describe the removal processes. Kinetics of the Cr(VI) removal was found to follow pseudo-second-order rate equation. Furthermore, the as-prepared and Cr(VI)-adsorbed FCSNs were carefully examined by scanning electron microscopy (SEM), energy dispersive X-ray analysis (EDX), Fourier transform infrared spectroscopy (FT-IR), and X-ray photoelectron spectroscopic analysis (XPS). The characterization results suggested that the adsorbed Cr(VI) was partially reduced to Cr(lll) in Cr2O3/Cr(OH)3 on the FCSNs. The possible mechanism of removal of Cr(VI) on FCSNs was proposed, which involved the dominant Cr(VI) adsorption, followed by the partial reduction of Cr(VI) to Cr(III) (chromium(III) oxyhydroides) on the surface of FCSNs. These Fe@Fe2O3 core-shell nanowires with high specific surface area and strong magnetic property are very attractive for the removal of Cr(VI) from wastewater.  相似文献   

3.
The hexavalent chromium (Cr(VI)) removal capacity of acid-washed zerovalent iron (AW-Fe0) was evaluated under different groundwater geochemistry conditions through column experiments. It was found that each gram of the AW-Fe0 could remove 0.65-1.76 mg of Cr(VI) from synthetic groundwater in the absence of bicarbonate (HCO3-), magnesium and/or calcium ions. Groundwater geochemistry was found to exert various degrees of impact on Cr(VI) removal by the AW-Fe0, in which HCO3- alone gave the mildest impact whereas the copresence of calcium and HCO3- exerted the greatest impact In comparison with the unwashed Fe0, the AW-Fe0 showed a poorer Cr(VI) removal capacity and was also more susceptible to the influence of the dissolved groundwater constituents on Cr(VI) removal,thereby indicating the unsuitability of using AW-Fe0 in permeable reactive barriers for remediation of Cr(VI)-contaminated groundwater. On the AW-Fe0 surface, where the indigenous iron precipitates were almost erased, trivalent chromium including chromium (III) oxides, hydroxides, and oxyhydroxides in irregular strip, chick footmark-liked or boulder-liked forms as well as Cr(III)-Cr(VI) mixed oxides were detected.  相似文献   

4.
针对目前酸性媒染染料废水中的六价铬Cr(VI)对水体环境污染严重的问题,以柳絮纤维为原料,通过限氧裂解法制备了KOH活化生物质炭(CBK)、NaOH活化生物质炭(CBN),采用吸附批实验法研究模拟染料废液pH值、吸附剂投放量、温度效应等对柳絮纤维生物质炭吸附处理Cr(VI)的影响,利用动力学和热力学相关模型对吸附过程进行拟合,探究柳絮纤维生物质炭对Cr(VI)的吸附机制。结果表明:CBK较CBN比表面积显著增大,表面吸附位点增多;在模拟废液pH值为2时,CBK、CBN对Cr(VI)的理论最大吸附量分别为82.68、47.16 mg/g,且吸附过程符合Freundlich热力学模型和准二级动力学模型,吸附过程主要为多分子层吸附,同时还伴随着化学吸附,该吸附反应是自发进行且为吸热反应,温度升高可显著提高柳絮纤维生物质炭对Cr(VI)的吸附量。  相似文献   

5.
In this paper, a new recovery system of the toxic hexavalent chromium Cr(VI) is proposed that uses a lignocellulosic substrate derived from the industrial treatment process of wheat bran. We studied the adsorption mechanism of Cr(VI) onto the lignocellulosic substrate and showed that the adsorption reaction consumes a large amount of protons goes along the reduction of Cr(VI) into Cr(III). The oxidation of lignin moieties takes place concurrently to the chromium reduction and leads to the formation of hydroxyl and carboxyl functions. The latter contribute to an increase in the number of ion-exchange sites for the reduced chromium. The maximum adsorption capacity for hexavalent chromium was found at about 35 mg g(-1) in an acidic medium. This is comparable to other natural substrates and ordinary adsorbents.  相似文献   

6.
Heavy metal pollution in the aqueous environment is a problem of global concern. Biosorption has been considered as a promising technology for the removal of low levels of toxic metals from industrial effluents and natural waters. A modified fungal biomass of Penicillium chrysogenum with positive surface charges was prepared by grafting polyethylenimine (PEI) onto the biomass surface in a two-step reaction. The presence of PEI on the biomass surface was verified by FTIR and X-ray photoelectron spectroscopy (XPS) analyses. Due to the high density of amine groups in the long chains of PEI molecules on the surface, the modified biomass was found to possess positive zeta potential at pH below 10.4 as well as high sorption capacity for anionic Cr(VI). Using the Langmuir adsorption isotherm, the maximum sorption capacity for Cr(VI) at a pH range of 4.3-5.5 was 5.37 mmol/g of biomass dry weight, the highest sorption capacity for Cr(VI) compared to other sorbents reported in the literature. Scanning electronic microscopy (SEM) provided evidence of chromium aggregates formed on the biomass surface. XPS results verified the presence of Cr(III) on the biomass surface in the pH range 2.5-10.5, suggesting that some Cr(VI) anions were reduced to Cr(III) during the sorption. The sorption kinetics indicated that redox reaction occurred on the biomass surface, and whether the converted Cr(III) ions were released to solution or adsorbed on the biomass depended on the solution pH. Sorption mechanisms including electrostatic interaction, chelation, and precipitation were found to be involved in the complex sorption of chromium on the PEI-modified biomass.  相似文献   

7.
为更好地吸附水中的Cr(VI)和Pb(II)等重金属离子,并且避免吸附材料对水体的二次污染,利用对甲基苯磺酰胺为功能化试剂,通过水热法对聚丙烯腈(PAN)纳米纤维膜进行化学改性,得到了具有吸附重金属离子功能的磺胺化PAN纳米纤维膜,并研究了该纤维膜对Cr(VI)和Pb(II)的吸附去除性能和机制。结果表明:当水热温度为125 ℃,水热时间为2.5 h时,可得到形貌良好的磺胺化PAN纳米纤维膜;磺胺化PAN纳米纤维膜对Cr(VI)的吸附符合Langmuir模型,且满足二级动力学方程,在质量浓度为50 mg/L的K2Cr2O7溶液中1 h后可达到吸附平衡,吸附量为220.4 mg/g;对Pb(II)的吸附符合Freundlich吸附模型,且满足二级动力学方程,在质量浓度为50 mg/L的Pb(NO3)2溶液中1 h后可达到吸附平衡,吸附量为185.6 mg/g。  相似文献   

8.
Permeable reactive barriers containing zerovalent iron are being increasingly employed for in situ remediation of groundwater contaminated with redox active metals and chlorinated organic compounds. This research investigated the effect of chromate concentration on its removal from solution by zerovalent iron. Removal rates of aqueous Cr(VI) by iron wires were measured in batch experiments for initial chromium concentrations ranging from 100 to 10 000 microg/L. Chromate removal was also measured in columns packed with zerovalent iron filings over this same concentration range. Electrochemical measurements were made to determine the free corrosion potential and corrosion rate of the iron reactants. In both the batch and column reactors, absolute rates of chromium removal declined with increasing chromate concentration. Corrosion current measurements indicated that the rate of iron corrosion decreased with increasing Cr(VI) concentrations between 0 and 5000 microg/L. At a Cr(VI) concentration of 10 000 microg/L, Tafel polarization diagrams showed that chromium removal was affected by its diffusion rate through a passivating oxide film and by the ability of iron to release Fe2+ at anodic sites. In contrast, water reduction was not mass transfer limited, but chromium did decrease the exchange current for the hydrogen evolution reaction. Even at the most passivating concentration of 10 000 microng/L, effluent Cr(VI) concentrations in the column reactors reached a steady state, indicating that passivation had also reached a steady state. Although chromate contributes to iron surface passivation, the removal rates are still sufficiently fast for in situ iron barriers to be effective for Cr(VI) removal at most environmentally relevant concentrations.  相似文献   

9.
Nanoscale zero-valent iron (NZVI) represents a promising approach for source zone control, but concerns over its reactive lifetime might limit application. Here, we demonstrate that dithionite (S?O?2?), a reducing agent for in situ redox manipulation, can restore the reducing capacity of passivated NZVI. Slurries of NZVI were aged in the presence (3 days) and absence (60 days) of dissolved oxygen over a range of pH values (6-8). Upon loss of reactivity toward model pollutants{1,1,1,2-tetrachloroethane, hexavalent chromium [Cr(VI)], nitrobenzene}, aged suspensions were reacted with dithionite, and the composition and reactivity of the dithionite-treated materials were determined. NZVI aging products generally depended on pH and the presence of oxygen, whereas the amount of dithionite influenced the nature and reducing capacity of products generated from reaction with aged NZVI suspensions. Notably, air oxidation at pH ≥ 8 quickly exhausted NZVI reactivity despite preservation of significant Fe(0) in the particle core. Under these conditions, formation of a passive surface layer hindered the complete transformation of NZVI particles into iron(III) oxides, which occurred at lower pH. Reduction of this passive layer by low dithionite concentrations( 1 g/g of NZVI) restored suspension reactivity to levels equal to, and occasionally greater than, that of unaged NZVI. Multiple dithionite additions further improved pollutant removal, allowing at least a 15-fold increase in Cr(VI) removal [~300 mg of Cr(VI)/g of NZVI] relative to that of as-received NZVI [~20 mg of Cr(VI)/g of NZVI].  相似文献   

10.
通过水热法合成Fe3O4@VC磁性纳米粒子,采用透射电镜、红外光谱和X射线衍射等表征手段对合成的粒子结构进行表征。探讨了pH值、吸附时间、吸附剂用量、溶液初始浓度等因素对六价铬Cr(VI)吸附的影响,并对Cr(VI)的吸附热力学和动力学进行了研究。结果表明,在pH为1.50,25 ℃条件下,磁性纳米粒子对Cr(VI)的饱和吸附量可达39.12 mg/g,吸附率为85%以上。吸附性能试验表明,磁性纳米粒子对Cr(VI)的吸附符合Langmuir热力学模型和HO准二级动力学吸附模型。  相似文献   

11.
A method has been developed for removing chromium from alkaline high-level radioactive tank waste. Removing chromium from these wastes is critical in reducing the volume of waste requiring expensive immobilization and deep geologic disposition. The method developed is based on the oxidation of insoluble chromium(III) compounds to soluble chromate using ferrate. This method could be generally applicable to removing chromium from chromium-contaminated solids, when coupled with a subsequent reduction of the separated chromate back to chromium(III). The tests conducted with a simulated Hanford tank sludge indicate that the chromium removal with ferrate is more efficient at 5 M NaOH than at 3 M NaOH. Chromium removal increases with increasing Fe(VI)/Cr(II) molar ratio, but the chromium removal tends to level out for Fe(VI)/ Cr(III) greaterthan 10. Increasingtemperature leadsto better chromium removal, but higher temperatures also led to more rapid ferrate decomposition. Tests with radioactive Hanford tank waste generally confirmed the simulant results. In all cases examined, ferrate enhanced the chromium removal, with a typical removal of around 60-70% of the total chromium present in the washed sludge solids. The ferrate leachate solutions did not contain significant concentrations of transuranic elements, so these solutions could be disposed as low-activity waste.  相似文献   

12.
We investigated a method for delivering ferrous iron into the subsurface to enhance chemical reduction of Cr(VI) in chromite ore processing solid waste (COPSW) derived from the production of ferrochrome alloy. The COPSW is characterized by high pH (8.5-11.5) and high Cr(VI) concentrations in the solid phase (up to 550 mg kg(-1)) and dissolved phase (3-57 mg L(-1)). The dominant solid-phase minerals are forsterite (Mg2SiO4), brucite (Mg-(OH)2), and hydrocalumite [Ca4(Al, Fe)2(OH)12X x 6H2O), X = (OH)2(2-), SO4(2-), CrO4(2-)]. The method utilizes FeSO4 in combination with Na2S2O4 to inhibit oxidation and precipitation of the ferrous iron, thereby preventing well and formation clogging. Laboratory batch tests using a 0.05 M FeSO4 + 0.05 M Na2S2O4 solution indicated effective treatment of both dissolved and solid-phase Cr(VI). Contrary to treatments with FeSO4 and FeCl2 alone, the combination resulted in both complete removal of Cr(VI) from solution and sustained Fe(ll) concentrations in solution after a 24 h period. A field test involving injection of 5700 L of a 0.07 M FeSO4 + 0.07 M Na2S2O4 solution into a COPSW saturated zone (pH 11.5) indicated no well and formation clogging during injection. Examination of a core collected 0.46 m from the injection well following injection indicated effective treatment of the solid phase Cr(VI) based on analysis of water, phosphate solution, and high temperature alkaline extracts. The combined reductant solution also imparted a residual treatment capacity to the COPSW allowing for subsequent treatment of dissolved phase Cr(VI); however, dissemination of the iron in the highly alkaline environment appeared to be impeded by the inability to sufficiently lower the pH with distance from the injection well to avoid precipitation of Fe(OH)2 and likely also FeCO3. Injection of a 0.2 M FeSO4 + 0.2 M Na2S2O4 solution into another COPSW saturated zone (pH 9) indicated much more effective dissemination of the injected iron.  相似文献   

13.
A facile thermodecomposition process to synthesize magnetic graphene nanocomposites (MGNCs) is reported. High-resolution transmission electron microscopy and energy filtered elemental mapping revealed a core@double-shell structure of the nanoparticles with crystalline iron as the core, iron oxide as the inner shell and amorphous Si-S-O compound as the outer shell. The MGNCs demonstrate an extremely fast Cr(VI) removal from the wastewater with a high removal efficiency and with an almost complete removal of Cr(VI) within 5 min. The adsorption kinetics follows the pseudo-second-order model and the novel MGNC adsorbent exhibits better Cr(VI) removal efficiency in solutions with low pH. The large saturation magnetization (96.3 emu/g) of the synthesized nanoparticles allows fast separation of the MGNCs from liquid suspension. By using a permanent magnet, the recycling process of both the MGNC adsorbents and the adsorbed Cr(VI) is more energetically and economically sustainable. The significantly reduced treatment time required to remove the Cr(VI) and the applicability in treating the solutions with low pH make MGNCs promising for the efficient removal of heavy metals from the wastewater.  相似文献   

14.
The kinetics of chromate removal from contaminated water by zerovalent iron media are not well understood. This study investigated the reactions occurring on iron surfaces in chromate solutions in order to understand the removal kinetics and to assess the long-term ability of zerovalent iron for removing Cr(VI) from contaminated water. Tafel polarization analysis and electrochemical impedance spectroscopy were used to determine the corrosion rates and charge-transfer resistances associated with Cr(VI) removal by iron wires suspended in electrolyte solutions with initial Cr(VI) concentrations of 10,000 microg/L. The condition of the iron surfaces at the time of their exposure to chromate determined the effectiveness of the iron for chromate removal. Both iron coated with a water-formed oxide and initially oxide-free iron were effective for chromate removal. However, iron coated with an air-formed oxide was an order of magnitude less effective for removing soluble chromium. Although iron with the air-formed oxide was largely passivated with respect to chromate removal, its overall rate of corrosion was similar to that for iron with the other initial surface conditions. This indicates that water, but not chromate, was able to penetrate the air-formed oxide coating and access cathodic sites. For all initial surface conditions, addition of chromate decreased the corrosion rate by increasing the corrosion potential and the anodic charge transfer resistance. Although Cr(VI) is a strong oxidant rates of iron corrosion were not proportional to the aqueous Cr(VI) concentrations due to anodic control of iron corrosion. Under anodically controlled conditions, the rate of corrosion was limited by the rate at which Fe2+ could be released at anodic sites and not by the rate at which oxidants were able to accept electrons. This study shows that the zero order removal kinetics of Cr(VI) by iron media can be explained by anodic control of iron corrosion and the concomitant anodic control of Cr(VI) reduction.  相似文献   

15.
The reaction of hexavalent chromium (Cr(VI)) with zerovalent iron (Fe0) during soil and groundwater remediation is an important environmental process. This study used several techniques including X-ray photoelectron spectroscopy (XPS) and X-ray absorption spectroscopy to investigate nanometer scale Fe0 particles (nano Fe0) treated with Cr(III) and Cr(VI). X-ray diffraction and XPS analyses of oxidized nano Fe0 showed the crystalline Fe(III) phase is composed of lepidocrocite (gamma-FeOOH). Results of XPS Cr 2p data and Cr K-edge X-ray absorption near edge spectroscopy (XANES) provided evidence that Cr(VI) was entirely reduced to Cr(III) by nano Fe0 with no residual Cr(VI) after reaction. In addition, XPS and XANES results of Cr(III) precipitated as Cr(OH)3 in the presence of corroding nano Fe0 were nearly identical to the Cr(VI)-nano Fe0 reaction product. Detailed analysis of XPS O 1s line spectra revealed that both Cr(III)- and Cr(VI)-treated nano Fe0 yielded a predominantly hydroxylated Cr(OH)3 and/ or a mixed phase CrxFe(1 - x)(OH)3 product. The structure of the Cr(III)- and Cr(VI)-treated nano Fe0 determined using extended X-ray absorption fine structure spectroscopy (EXAFS) revealed octahedral Cr(III) with Cr-O interatomic distances between 1.97 and 1.98 A for both Cr(III) and Cr(VI) treatments and a pronounced Cr-Cr second interatomic shell at 3.01 A. Our results suggest that the reaction product of Cr(VI)-treated nano Fe0 is either a poorly ordered Cr(OH)3 precipitate or possibly a mixed phase CrxFe(1 - x)(OH)3 product, both of which are highly insoluble under environmental conditions.  相似文献   

16.
δ型层状MnO2治理碱性染料废水   总被引:2,自引:0,他引:2  
蔡冬鸣  任南琪 《印染》2006,32(15):11-13,16
以层状粉末MnO2为处理剂,对含碱性染料罗丹明B的模拟印染废水进行静态脱色试验。考察了处理时间、体系pH值、MnO2投加量和温度等对脱色的影响,得出了吸附等温方程;采用FT-IR和XPS初步分析了脱色机理。结果表明,投加不同量的MnO2后,10min内基本可达到脱色平衡;较低的pH值和较高的MnO2投加量有助于脱色;温度对脱色影响不大。pH值为3和7时,MnO2对罗丹明B染料的吸附符合Langmuir和Freundlich等温方程;该脱色过程是羟基键合与电性吸附的迭加。  相似文献   

17.
We demonstrated that mesoporous titania beads of uniform size (about 450 μm) and high surface area could be synthesized via an alginate biopolymer template method. These mesoporous titania beads could efficiently remove Cr(VI), Cd(II), Cr(III), Cu(II), and Co(II) ions from simulated wastewater with a facile subsequent solid-liquid separation because of their large sizes. We chose Cr(VI) removal as the case study and found that each gram of these titania beads could remove 6.7 mg of Cr(VI) from simulated wastewater containing 8.0 mg·L(-1) of Cr(VI) at pH = 2.0. The Cr(VI) removal process was found to obey the Langmuir adsorption model and its kinetics followed pseudo-second-order rate equation. The Cr(VI) removal mechanism of titania beads might be attributed to the electrostatic adsorption of Cr(VI) ions in the form of negatively charged HCrO(4)(-) by positively charged TiO(2) beads, accompanying partial reduction of Cr(VI) to Cr(III) by the reductive surface hydroxyl groups on the titania beads. The used titania beads could be recovered with 0.1 mol·L(-1) of NaOH solution. This study provides a promising micro/nanostructured adsorbent with easy solid-liquid separation property for heavy metal ions removal.  相似文献   

18.
A composite sorbent (GAC-QPVP) was prepared by coating poly(4-vinylpyridine) onto a granular activated carbon, followed by cross-linking and quaternization processes. The sorbent was characterized by scanning electron microscopy, point of zero charge measurement, and BET analysis. Batch experiments with variable pH, ionic strength, and concentrations of Cr(VI), sorbent, and competing anions were conducted to evaluate the selective sorption of Cr(VI) from aqueous solutions. The results showed that Cr(VI) sorption rates could be described by a reversible second-order kinetics, and equilibrium uptake of Cr(VI) increased with decreasing pH, decreasing ionic strength, and increasing sorbent concentration. The estimated maximum equilibrium uptake of chromium was 53.7 mg/g at pH = 2.25, 30.7 mg/g at pH = 3.65, and 18.9 mg/g at pH = 6.03, much higher than the maximum capacity of PVP-coated silica gel, an adsorbent for Cr examined previously. When compared with the untreated granular activated carbon, sorption onto GAC-QPVP resulted in much less Cr(VI) reduction and subsequent release of Cr(III). The effect of phosphate, sulfate, and nitrate was minor on the selective sorption of Cr(VI). An ion exchange model that was linked with aqueous speciation chemistry described Cr(VI) sorption reasonably well as a function of pH, ionic strength, and Cr(VI) concentration. Model simulations suggested that sorbed Cr(VI) was partially reduced to Cr(III) on the sorbent when pH was less than 4. The presence of Cr(III) on the sorbent was confirmed by the X-ray photoelectron spectroscopic analysis. Overall, the study has demonstrated that GAC-QPVP can effectively remove Cr(VI) from aqueous solutions under a wide range of experimental conditions, without significant Cr(III) release associated with the virgin GAC treatment.  相似文献   

19.
针对目前酸性染料染色废水中染料和重金属Cr(Ⅵ)引起的严重环境污染问题,以零价铁(Fe0)/氧化石墨烯(GO)复合物作为吸附剂,以分别含有弱酸性蓝AS和Cr(Ⅵ)的水溶液模拟染色废水,探究Fe0与GO的质量比、溶液pH值及染料与Cr(Ⅵ)的初始质量浓度对吸附性能的影响,考察Fe0/GO吸附剂对酸性染料与Cr(Ⅵ)的吸附机制,研究其吸附热力学与动力学。结果表明:Fe0与GO吸附剂在质量比为4∶1时具有最佳吸附效果,弱酸性蓝AS染液初始质量浓度为75 mg/L,温度为30℃,pH值为4.0时,12 h后去除率为85.6%,最大吸附量达到85.6 mg/g; Cr(Ⅵ)溶液初始质量浓度为75 mg/L,温度为30℃,pH值为3.0时,12 h后去除率为95.8%,最大吸附量达到95.8 mg/g; Fe0/GO对2种污染物的吸附过程均符合Langmuir模型和准二级动力学模型。  相似文献   

20.
In zerovalent iron treatment systems, the presence of multiple solution components may impose combined effects that differ from corresponding individual effects. The copresence of humic acid and hardness (Ca2+/Mg2+) was found to influence Cr(VI) reduction by Feo and iron dissolution in a way different from their respective presence in batch kinetics experiments with synthetic groundwater at initial pH 6 and 9.5. Cr(VI) reduction rate constants (k(obs)) were slightly inhibited by humic acid adsorption on iron filings (decreases of 7-9% and 10-12% in the presence of humic acid alone and together with hardness, respectively). The total amount of dissolved Fe steadily increased to 25 mg L(-1) in the presence of humic acid alone because the formation of soluble Fe-humate complexes appeared to suppress iron precipitation. Substantial amounts of soluble and colloidal Fe-humate complexes in groundwater may arouse aesthetic and safety concerns in groundwater use. In contrast, the coexistence of humic acid and Ca2+/Mg2+ significantly promoted aggregation of humic acid and metal hydrolyzed species, as indicated by XPS and TEM analyses, which remained nondissolved (>0.45 microm) in solution. These metal-humate aggregates may impose long-term impacts on PRBs in subsurface settings.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号