共查询到18条相似文献,搜索用时 62 毫秒
1.
在人脸识别过程中,基于2DPCA特征提取方法具有直接、高效等特点。但它只包含了二阶统计信息,因而丢失了可能对分类很有用的高阶统计信息而使识别率受到一定影响。SVM采取升维的方法把线性不可分问题转变为线性可分问题,识别率较高,但直接对图像分类时运算量大、运行时间长。文章结合两者的优点,使用了2DPCA和SVM相结合的人脸识别方法,即先利用2DPCA进行特征提取,然后把降维后的数据输入SVM进行分类识别。该方法在ORL、YALE人脸库上的实验表明,不但可以提高识别率,而且所用时间明显减少。 相似文献
2.
3.
基于改进2DPCA的红外图像人脸识别方法 总被引:1,自引:1,他引:1
红外成像具有抗干扰性强、独立于可见光源、防伪装等优点,这使得红外图像人脸识别可以在很大程度上弥补可见光人脸识别技术的缺陷和不足。结合红外图像人脸识别的特点,提出了一种基于改进2DPCA的红外图像人脸识别方法。在特征提取中加入Fisher思想,弥补传统2DPCA的缺陷。实验结果表明,这种识别方法不论从理论上还是从实验上都是可行的,具有良好的识别能力。 相似文献
4.
5.
6.
将样本中间值融入模块二维主成分分析方法进行人脸识别。该算法首先对图像矩阵进行了模块化得到子图像矩阵,之后直接把子图像矩阵集作为样本集。与原始模块二维主成分分析算法不同之处在于,将子块的类内中间值引入到总体协方差矩阵的求解过程中。通过ORL数据库的测试,融合后的算法继承了模块二维主成分分析的强鲁棒性,提高了识别率,证明了改进后的方法相对普通的二维主成分分析和模块二维主成分分析算法而言,性能得到提升。 相似文献
7.
基于支撑向量机的人脸识别技术 总被引:12,自引:0,他引:12
文中提出了一种基于支撑向量的人脸识别方法。该方法与传统方法相比,克服了后者固有的过学习和欠学习问题,并且对复杂模式的能力强,达到了很高的人脸识识别率。在对训练图像进行预处理之后,使用主成分析方法对人脸图像进行特征提取和选择,用所选择的人脸特征向最训练多个支撑向量机,最后用训练好的支撑向量机进行人脸识别。文中将支撑向量机性能和传统方法进行了对比,并且对不同核函数的支撑向量机的性能也进行了对比。发现当特征脸数量不同时,不同核函数支撑向量机的性能也不同。总体而言,二阶多项式支撑向量机在人脸识别问题中具有更好的性能。 相似文献
8.
9.
基于支撑向量机的人脸识别技术 总被引:3,自引:2,他引:3
文中提出了一种基于支撑向量机的人脸识别方法.该方法与传统方法相比,克服了后者固有的过学习和欠学习问题,并且对复杂模式的识别能力强,达到了很高的人脸识别率.在对训练图像进行预处理之后,使用主成分分析方法对人脸图像进行特征提取和选择,用所选择的人脸特征向量训练多个支撑向量机,最后用训练好的支撑向量机进行人脸识别.文中将支撑向量机性能和传统方法进行了对比,并且对不同核函数的支撑向量机的性能也进行了对比.发现当特征脸数量不同时,不同核函数支撑向量机的性能也不同.总体而言,二阶多项式支撑向量机在人脸识别问题中具有更好的性能. 相似文献
10.
为了提高人脸识别的速度,提出了一种基于局部线性嵌套(LLE)和最小二乘支持向量机(LS-SVM)的人脸识别方法.该方法采用主成分分析(PCA)和LLE相结合的算法,对归一化处理过的人脸图像进行特征提取,利用LS-SVM对人脸图像样本集进行训练和识别,以提高识别的速度.最后将本文方法在ORL人脸数据库上进行试验,结果表明,人脸识别的速度有了一定的提高,识别率达到了90%以上. 相似文献
11.
传统的二维主成分分析法广泛应用于图像特征提取,为了使此算法更加有效,提出了一种结构化二维算法,即核范数2DPCA算法(N-2-DPCA).该算法基于核范数重构误差准则,将核范数最优化问题转化为基于F范数的最优化问题,然后通过采用迭代方法寻找到最佳投影矩阵,最后运用最小欧氏距离规则识别出待识别人脸的身份.在此基础之上,将N-2-DPCA扩展到基于双边投影的算法(N-B2-DPCA),采用曲线搜索算法寻找到双边投影矩阵,继而进行识别.最后将提出的算法在FERET和Yale B人脸数据库中进行人脸识别评估,实验结果表明所提出的算法与L1-2DPCA相比,重建误差降低了2.19%,识别率提高了2.03%,性能更好. 相似文献
12.
介绍一种新的基于双向二维主成分分析(B2DPCA)和极端学习机(ELM)的人脸识别方法,该方法是根据人脸曲波图像分解和一种改进的降维技术,通过B2DPCA生成识别特征集来提高分类精度.该方法还能够有效地提高分类正确率和降低对原型数量的依赖.通过做大量的实验,把结果和现存技术相比较. 相似文献
13.
基于DWT,2DPCA和KPCA的人脸识别 总被引:1,自引:0,他引:1
利用离散小波变换对人脸图像进行压缩,提取人脸的低频分量,有效去除人脸图像高频分量的影响;再利用二维主元分析对小波变换后的人脸低频分量实行提取特征;然后使用核主元分析再次提取特征;最后用最小距离分类器完成人脸识别.基于ORL人脸数据库的实验结果表明,该算法能提高人脸识别率,有效减少计算量和降低计算复杂度. 相似文献
14.
针对目前大多数人脸识别算法参数多、计算量大,难以部署到移动端和嵌入式设备中的问题,提出了一种基于改进MobileFaceNet的人脸识别方法。通过对MobileFaceNet模型结构的调整,将bottleneck模块优化为sandglass模块,改良深度卷积和逐点卷积的相对位置,适当增大sandglass模块的输出通道数,从而减少特征压缩时的信息丢失,增强人脸空间特征的提取。实验结果表明:改进后的方法在LFW测试数据集上准确率达99.15%,模型大小和计算量分别仅为原算法的61%和45%,验证了所提方法的有效性。 相似文献
15.
针对现有的人脸识别算法由于光照、表情、姿态、伪装等变化而严重影响识别性能的问题,提出了一种基于通用学习框架结合2DPCA的鲁棒人脸识别算法。首先借助于额外的通用训练样本集进行样本的叠加以增加训练样本的数量;然后利用经典的2DPCA算法进行特征提取;最后,利用最近邻分类器对人脸进行分类并完成最终的人脸识别。在基准人脸数据库ORL、FERET及鲁棒人脸数据库AR、扩展YaleB上的实验验证了该算法的有效性及鲁棒性,实验结果表明,相比其他几种人脸识别算法,提出的算法不仅提高了人脸识别率,而且大大地减少了识别所用时间,有望应用于实时鲁棒人脸自动识别系统中。 相似文献
16.
17.
主成分分析(PCA)和线性判别分析(LDA)是人脸识别的特征提取中最为经典和广泛使用的方法,鉴于PCA和ANMM各自的优点,本文提出了称为Gabor-2DIANMM的方法,引入二维处理方法,使用从训练图像中提的Gabor特征对子空间进行训练,同时通过实验数据选取了ANMM中异类相近数据集的最佳取值范围.实验表明,这种方... 相似文献
18.
目前的人脸识别算法在其特征提取过程中采用手工设计(hand-crafted)特征或利用深度学习自动提取特征.本文提出一种基于改进深层网络自动提取特征的人脸识别算法,可以更准确地提取出目标的鉴别性特征.算法首先对图像进行ZCA(Zero-mean Component Analysis)白化等预处理,减小特征相关性,降低网络训练复杂度.然后,基于卷积、池化、多层稀疏自动编码器构建深层网络特征提取器.所使用的卷积核是通过单独的无监督学习获得的.此改进的深层网络通过预训练和微调,得到一个自动的深层特征提取器.最后,利用Softmax回归模型对提取的特征进行分类.本文算法在多个常用人脸库上进行了实验,表明了其在性能上比传统方法和普通深度学习方法都有所提高. 相似文献