共查询到20条相似文献,搜索用时 78 毫秒
1.
信号重构是压缩感知的核心技术之一,而其重构精度和所耗时长直接影响其应用效果。现今分段正交匹配追踪算法(StOMP)因耗时短而得到广泛应用,但也存在着重构精度差、稳定性低的缺点。提出一种基于粒子群优化(PSO)算法且同时具有回溯特性的StOMP改进算法(ba-IWPSO-StOMP),即首先在StOMP算法的一次原子选择上,引入回溯策略,实现原子的二次筛选;在每次迭代计算中,使用具有惯性权重指数递减的PSO(IWPSO)算法对传感矩阵中部分原子进行优化,从而实现更高精度,更少迭代次数的信号重构。对一维信号和二维图像的重构结果表明,在稀疏条件相同的情况下,算法在收敛时间较短的情况下,其重构精度明显优于StOMP等同类算法。 相似文献
2.
3.
针对压缩采样匹配追踪( CoSaMP)算法重构精度相对较差的问题,为了提高算法的重构性能,提出了一种基于伪逆处理改进的压缩采样匹配追踪( MCoSaMP)算法。首先,在迭代前,对观测矩阵进行伪逆处理,以此来降低原子间的相干性,从而提高原子选择的准确性;然后,结合正交匹配追踪算法( OMP),将OMP算法迭代K次后的原子和残差作为CoSaMP算法的输入;最后,每次迭代后,通过判断残差是否小于预设阈值来决定算法是否终止。实验结果表明,无论是对一维高斯随机信号还是二维图像信号,MCoSaMP算法的重构效果优于CoSaMP算法,能够在观测值相对较少的情况下,实现信号的精确重构。 相似文献
4.
提出了实用性更强的完全受噪声扰动理论模型,引入了与原信号相关的乘性噪声;并基于新的模型,提出了一种改进的压缩采样匹配追踪算法.该算法通过构造一个感知测量矩阵,在信号替代阶段中取代随机测量矩阵来减少相关性对支撑集筛选的影响,最后可在乘性噪声存在的情况下实现了信号的精确重建.实验结果表明,在相同测试条件下,该算法的重建效果均优于其他贪婪算法和基匹配法(basic pursuit,BP). 相似文献
5.
压缩感知理论的基本思想是原始信号在某一变换域是稀疏的或者是可压缩的,并将奈奎斯特采样定理中的采样过程和压缩过程合二为一。稀疏度自适应匹配追踪(SAMP)算法能够实现稀疏度未知情况下的重构,而广义正交匹配追踪算法每次迭代时选择多个原子,提高了算法的收敛速度。基于上述两种重构算法的优势,提出了广义稀疏度自适应匹配追踪(Generalized Sparse Adaptive Matching Pursuit,gSAMP)算法。针对重构图像的峰值信噪比、重构时间、相对误差等客观评价指标,以及主观视觉上对所提算法与传统的贪婪算法进行对比。在压缩比固定为0.5时,gSAMP算法的重构效果优于传统的MP、OMP、ROMP、SAMP以及gOMP贪婪类重构算法的效果。 相似文献
6.
针对分段正交匹配追踪(StOMP)算法对信号重构效果较差的问题,提出一种回溯正则化分段正交匹配追踪(BR-StOMP)算法。首先,该算法采用正则化思想选取能量较大的原子,以减少阈值阶段候选集中的原子;然后,利用回溯对原子进行检验,并对解的支撑集中的原子重新筛选一次,同时删除对解的贡献较低的原子,提高算法的重构率;最后,对感知矩阵进行归一化处理,使算法更加简单。仿真结果表明:BR-StOMP算法与正交匹配追踪(OMP)算法相比较峰值信噪比提高8%~10%左右,运行时间减少70%~80%;与StOMP算法相比较,峰值信噪比提高19%~35%。BR-StOMP算法能够精确地恢复信号,重建效果优于OMP算法和StOMP算法。 相似文献
7.
针对高分辨率的图像在采集过程中存在数据量较大的问题,提出了一种基于正交匹配追踪(OMP)算法的图像重构方法,设计了OMP算法的硬件结构,并在FPGA平台上进行了仿真验证;首先,研究了压缩感知算法的基本原理;然后,分别基于匹配追踪算法(MP)和正交匹配追踪算法实现了图像的重构;最后,通过仿真对比分析了这两种方法的图像重构结果,OMP算法误差在10~(-15)量级,明显优于MP算法的10~(3)误差量级,并且OMP算法的迭代收敛性也优于MP算法。 相似文献
8.
针对广义正交匹配追踪(GOMP)算法复杂度高、重构时间长的问题,提出了一种基于随机支撑挑选的GOMP(StoGOMP)算法。首先引入随机支撑挑选的策略,在每次迭代中随机生成一个概率值。然后通过比较此概率值与预设概率值的大小来决定候选支撑集的挑选方式:若此概率值小于预设概率值,则采用匹配计算方式;否则,采用随机选择方式。最后根据得到的候选支撑来更新残差。这种方式充分考虑了算法单次迭代复杂度和迭代次数之间的平衡,减少了算法的计算量。一维随机信号重构实验结果表明,在预设概率值为0.5、稀疏度为20时,StoGOMP算法相较GOMP算法达到100%重构成功率所需的采样数减少了9.5%。实际图像重构实验结果表明,所提出的算法具有与GOMP算法相当的重构精度,且在采样率为0.5时,所提算法的重构时间相较于原算法减少了27%以上,这说明StoGOMP算法能够有效减少信号的重构时间。 相似文献
9.
在压缩感知框架下运用正则化正交匹配追踪(ROMP)算法进行图像重构时,迭代次数取值不合适会严重降低重构图像的质量。针对这一问题,提出了确定合理迭代次数的方法。将以往迭代得出的结果作为先验知识,获取具有不同稀疏程度图像块的最佳迭代次数,从而保证了整幅图像的重构质量。实验表明,该方法重构效果优于采用固定迭代次数的ROMP算法。 相似文献
10.
11.
基于压缩感知信号重建的自适应正交多匹配追踪算法* 总被引:1,自引:2,他引:1
近年来出现的压缩感知理论为信号处理的发展开辟了一条新的道路,不同于传统的奈奎斯特采样定理,它指出只要信号具有稀疏性或可压缩性,就可以通过少量随机采样点来恢复原始信号。在研究和总结传统匹配算法的基础上,提出了一种新的自适应正交多匹配追踪算法(adaptive orthogonal multi matching pursuit,AOMMP)用于稀疏信号的重建。该算法在选择原子匹配迭代时分两个阶段,引入自适应和多匹配的原则,加快了原子的匹配速度,提高了匹配的准确性,实现了原始信号的精确重建。最后与传统OMP算法 相似文献
12.
13.
HUANG BorMin 《中国科学:信息科学(英文版)》2012,(4):889-897
Recovery algorithms play a key role in compressive sampling (CS).Most of current CS recovery algo-rithms are originally designed for one-dimensional (1D) signal,while many practical signals are two-dimensional (2D).By utilizing 2D separable sampling,2D signal recovery problem can be converted into 1D signal recovery problem so that ordinary 1D recovery algorithms,e.g.orthogonal matching pursuit (OMP),can be applied directly.However,even with 2D separable sampling,the memory usage and complexity at the decoder are still high.This paper develops a novel recovery algorithm called 2D-OMP,which is an extension of 1D-OMP.In the 2D-OMP,each atom in the dictionary is a matrix.At each iteration,the decoder projects the sample matrix onto 2D atoms to select the best matched atom,and then renews the weights for all the already selected atoms via the least squares.We show that 2D-OMP is in fact equivalent to 1D-OMP,but it reduces recovery complexity and memory usage significantly.What’s more important,by utilizing the same methodology used in this paper,one can even obtain higher dimensional OMP (say 3D-OMP,etc.) with ease. 相似文献
14.
语音信号稀疏分解是一种新的语音信号分解方法,可以将语音信号分解为很简洁的近似表达形式。在语音信号稀疏分解的基础上,可应用于语音处理的多个方面,如语音压缩、语音去噪和语音识别等。研究利用Matching Pursuit(MP)算法实现语音信号的稀疏分解,实验结果表明基于MP算法的语音信号稀疏分解具有较好的重建精度和较高的稀疏度。 相似文献
15.
为了平衡集成学习中差异性和准确性的关系并提高学习系统的泛化性能, 提出一种基于AdaBoost 和匹配追踪的选择性集成算法. 其基本思想是将匹配追踪理论融合于AdaBoost 的训练过程中, 利用匹配追踪贪婪迭代的思想来最小化目标函数与基分类器线性组合之间的冗余误差, 并根据冗余误差更新AdaBoost 已训练基分类器的权重, 进而根据权重大小选择集成分类器成员. 在公共数据集上的实验结果表明, 该算法能够获得较高的分类精度. 相似文献
16.
正交匹配追踪算法(OMP)是一种基于贪婪迭代思想的算法,是压缩感知中信号重构方法之一。为了降低OMP算法的计算复杂度,采用一种全局寻优能力较强的量子粒子群算法(QPSO)优化OMP算法中的匹配过程(QPSO-OMP);针对OMP算法特点,引入原子分量二次匹配,进一步提高QPSO-OMP算法重构精度。仿真结果表明,所提出的基于QPSO算法的二次匹配OMP算法复杂度低,精确重构概率高于基于粒子群算法的正交匹配追踪算法。 相似文献
17.
正交匹配追踪算法的优化设计与FPGA实现 总被引:1,自引:1,他引:1
设计了一种基于FPGA的正交匹配追踪(Orthogonal Matching Pursuit,OMP)算法的硬件优化结构,对OMP算法进行了改进,大大减少了乘法运算次数;在矩阵分解部分采用了交替柯列斯基分解(Alternative Cholesky Decomposition,ACD)方法避免开方运算,以减小计算延迟,整个系统采用并行计算、资源复用技术,在提高运算速度的同时减少资源利用。在Quartus II开发环境下对该设计进行了RTL级描述,在Altera公司的Cyclone II EP2C70F672C6上进行综合并完成时序仿真,仿真结果验证了设计的正确性。 相似文献
18.
目的:重构算法是压缩感知理论的关键问题之一,为了减少压缩感知方向追踪算法重建时间,并确保相对较高的重建精度,提出了一种非单调记忆梯度追踪(memory gradient pursuit,MGP)重构信号处理算法。方法:该算法建立在方向追踪框架下,采用正则化正交匹配策略实现了原子集的快速有效选择,对所选原子集利用非单调线性搜索准则确定步长,用记忆梯度算法计算更新方向,从而得到稀疏信号估计值。结果:该算法充分利用记忆梯度算法在Armijo线搜索下全局收敛性快速稳定的优点避免收敛到局部最优解,提升收敛效率。提出的MGP算法运行时间上比近似共轭梯度追踪算法缩短30%,可以精确重构一维信号和二维图像信号。结论:实验结果表明,该算法兼顾了效率和重建精度,有效提高信号重建性能,在相同测试条件下优于其他同类的重构算法。 相似文献
19.
针对稀疏自适应匹配追踪(SAMP)算法中存在的运行速度慢、重建效果欠佳的问题,提出了一种新的自适应的子空间追踪算法(MASP)。采用SAMP算法中分段的思想,先对半减小预估稀疏度,再逐一增加,得到真实稀疏度后,再利用子空间追踪算法对原始信号进行重构。实验表明,相比于SAMP算法,该算法在相同观测数量的情况下,具有较快的运行时间和较好的重建效果,其中,在重构信噪比方面平均提高8.2%。 相似文献
20.
为避免“绝对”声韵分割策略的主观性和随意性,结合语谱图以及匹配追踪算法,实现了一种对汉语孤立字进行重叠声韵分割的新的时频方法.以语谱图判决得到的浊音起点为声韵母过渡段的起点,以匹配追踪原子参数在浊音起点之后所达到的第一个极值的位置为过渡段终点.仿真实验结果表明,该方法的分割正确率可达87.5%;将分割后的声韵母单元分别送入语音识别系统,与以整个字节为识别单元相比识别率提高了1.33%. 相似文献