首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Classification, discrimination, and biochemical assignment of vibrational spectra of pollen samples belonging to 43 different species of the order Pinales has been made using three different vibrational techniques. The comparative study of transmission (KBr pellet) and attenuated total reflection (ATR) Fourier transform infrared (FT-IR) and FT-Raman spectroscopies was based on substantial variability of pollen grain size, shape, and relative biochemical composition. Depending on the penetration depth of the probe light, vibrational techniques acquire predominant information either on pollen grain walls (FT-Raman and ATR-FT-IR) or intracellular material (transmission FT-IR). Compared with the other two methods, transmission FT-IR obtains more comprehensive information and as a result achieves superior spectral identification and discrimination of pollen. The results strongly indicate that biochemical similarities of pollen grains belonging to the same plant genus or family lead to similar features in corresponding vibrational spectra. The exploitation of that property in aerobiological monitoring was demonstrated by simple and rapid pollen identification based on relatively small spectral libraries, with the same (or better) taxonomic resolution as that provided by optical microscopy. Therefore, the clear correlation between vibrational spectra and pollen grain morphology, biochemistry, and taxonomy is obtained, while successful pollen identification illustrates the practicability of such an approach in environmental studies.  相似文献   

2.
We report on the in situ characterization of tree pollen molecular composition based on Raman spectroscopy. Different from purification-based analysis, the nondestructive approach allows (i) to analyze various classes of molecules simultaneously at microscopic resolution and (ii) to acquire fingerprint-like chemical information that was used for the classification of pollen from different species. Hierarchical cluster analysis of spectra from fresh pollen samples of 15 species partly related at the genus level and family level indicates separation of species based on the complete Raman spectral signature and yields classification in accord with biological systematics. The results have implications for the further elucidation of pollen biochemistry and also for the development of chemistry-based online pollen identification methods.  相似文献   

3.
Diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) and Fourier transform infrared photoacoustic spectroscopy (FTIR-PAS) were used to study particle size and distribution of sucrose powder. Partial least squares (PLS) regression was used to correlate spectral data with particle size. FTIR-PAS spectra were similar to the spectra obtained using DRIFTS when the sample is mixed with 95% potassium bromide (KBr). Both DRIFTS and FTIR-PAS methods can successfully predict the mean panicle size and concentration in binary and quaternary mixtures. R-square values for both DRIFTS and FTIR-PAS are greater than 0.9.  相似文献   

4.
ABSTRACT

Diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) and Fourier transform infrared photoacoustic spectroscopy (FTIR-PAS) were used to study particle size and distribution of sucrose powder. Partial least squares (PLS) regression was used to correlate spectral data with particle size. FTIR-PAS spectra were similar to the spectra obtained using DRIFTS when the sample is mixed with 95% potassium bromide (KBr). Both DRIFTS and FTIR-PAS methods can successfully predict the mean panicle size and concentration in binary and quaternary mixtures. R-square values for both DRIFTS and FTIR-PAS are greater than 0.9.  相似文献   

5.
Fluoro substituted hydroxyapatite (FHAp) samples were prepared by a cyclic pH method. Both calcined and uncalcined samples were subjected to elemental analysis (F, Ca, P) and X-ray diffraction (XRD) analysis to verify composition and phase purity. Good correlation between a-axis parameters and fluoride ion content was found for calcined samples, however, for uncalcined samples the fluoride ion content was higher than estimated from the a-axis values. Fourier transform infra red (FT-IR) spectroscopy analysis of the calcined samples showed OH band shifts and splitting in accordance with F-HO interactions affecting the OH vibration. We conclude that the OH libration (620–780 cm-1 range) is more suited for estimation of fluoride ion content than the OH stretching. In contrast, uncalcined samples all displayed FT-IR spectra similar to that of hydroxyapatite (HAp) despite the presence of fluoride ions (18–73%). FT-IR emission spectroscopy was used to probe the changes occurring in the FT-IR spectra of HAp and FHAp samples upon heating. Interpretation of the spectral changes occurring during heating to 1,000 °C and subsequent cooling is given. Room temperature spectra of samples heated to various temperatures was used to determine the temperature necessary to produce FT-IR spectra displaying the expected OH bands. A model accounting for the combined observations is proposed.  相似文献   

6.
In order to predict omega-6 and omega-3 fatty acids in the diet of humans, seventy-three pork back fat adipose tissue samples were measured with Raman spectroscopy directly on adipose tissue and on melted fat. Melted fat samples were, in addition, measured with Fourier transform infrared (FT-IR) spectroscopy. Gas chromatography analyses were conducted as the reference analysis. Partial least squares regression (PLSR) was used to calibrate and validate all models predicting omega-3 and omega-6 fatty acids contents from spectra. Omega-6 fatty acids in melted fat measured with FT-IR was predicted with a correlation coefficient (R) of 0.93 and a root mean square error of cross-validation (RMSECV) of 1.61% of the total amount of fatty acids. Raman spectra measured on melted fat gave a prediction of omega-6 fatty acids with R=0.97, and RMSECV=0.99% of total amount of fatty acids. Omega-6 fatty acids were predicted with R=0.94, and RMSECV=1.50% of the total amount of fatty acids using Raman spectra recorded on adipose tissue. For omega-3 fatty acids, the highest R=0.91, and lowest RMSECV=0.23% of the total amount of fatty acids were obtained from Raman spectra acquired on melted fat. FT-IR and Raman spectroscopy may be used as rapid, nondestructive methods to determine omega-6 and omega-3 fatty acids in melted fat. Raman spectroscopy can also be used directly on adipose tissue.  相似文献   

7.
The use of infrared spectroscopy has spread from single compound research to the investigation of complex biological samples. In infrared spectroscopy, spectral pre-treatment techniques have been assumed to be equally applicable and effective in the analysis of biological samples with complex chemical composition and structure. In this research, the most commonly used pre-treatment techniques were investigated based on the identification of species from whole leaf samples of pharmaceutically important Epilobium and Hypericum genera. Two spectral collection modes were used; whole leaf transmission and KBr-tablet transmission mode. The results of this study do not support the current standard in pre-treatment methods. After the frequency decomposition of a spectral signal by Fourier transform and wavelet decomposition, it was revealed that the important information of whole plant leaf as an example of biological samples was contained in the spectral details. Therefore, smoothing techniques were not appropriate because high frequency information is lost. A vast majority of published work used a Savitzky-Golay smoothing method on infrared spectra of complex biological samples. This method was shown to be less effective. In contrast, taking the derivative of the spectra showed significantly better results; with this pre-treatment method, the overlapping bands become more evident.  相似文献   

8.
The ability of Raman spectroscopy and Fourier transform infrared (FT-IR) microscopy to discriminate between resins used for the manufacture of architectural finishes was examined in a study of 39 samples taken from a commercial resin library. Both Raman and FT-IR were able to discriminate between different types of resin and both split the samples into several groups (six for FT-IR, six for Raman), each of which gave similar, but not identical, spectra. In addition, three resins gave unique Raman spectra (four in FT-IR). However, approximately half the library comprised samples that were sufficiently similar that they fell into a single large group, whether classified using FT-IR or Raman, although the remaining samples fell into much smaller groups. Further sub-division of the FT-IR groups was not possible because the experimental uncertainty was of similar magnitude to the within-group variation. In contrast, Raman spectroscopy was able to further discriminate between resins that fell within the same groups because the differences in the relative band intensities of the resins, although small, were larger than the experimental uncertainty.  相似文献   

9.
Several techniques have been used to identify and classify plants. We proposed Fourier transform infrared (FT-IR) spectroscopy, together with hierarchical cluster analysis, as a rapid and noninvasive technique to differentiate plants based on their leaf fragments. We applied this technique to three different genera, namely, Ranunculus (Ranunculaceae), Acantholimon (Plumbaginaceae), and Astragalus (Leguminoseae). All of these genera are angiosperms and include a large number of species in Turkey. Ranunculus and Acantholimon have ornamental importance, while Astragalus is an important pharmaceutical genus. The FT-IR spectra revealed dramatic differences, which indicated the variations in lipid metabolism, carbohydrate composition, and protein conformation of the genera. Moreover, cell wall polysaccharides including diverse groups could be identified for each genus. Acantholimon was found to have the highest hydrogen capacity in its polysaccharide and proteins. A higher lignin content and a lower occurrence of decarboxylation and pectin esterification reactions were appointed for Ranunculus and Astragalus compared to Acantholimon. All these results suggested that FT-IR spectroscopy can be successfully applied to differentiate genera, as demonstrated here with Ranunculus, Astragalus, and Acantholimon. In addition, we used this technique to identify the same species from different geographical regions. In conclusion, the current FT-IR study presents a novel method for rapid and accurate molecular characterization and identification of plants based on the compositional and structural differences in their macromolecules.  相似文献   

10.
Fourier transform infrared (FT-IR) spectroscopy and chemometrics were used to verify the origin of honey samples (n=150) from Europe and South America. Authentic honey samples were collected from five sources, namely unfiltered samples from Mexico in 2004, commercially filtered samples from Ireland and Argentina in 2004, commercially filtered samples from the Czech Republic in 2005 and 2006, and commercially filtered samples from Hungary in 2006. Samples were diluted with distilled water to a standard solids content (70 degrees Brix) and their spectra (2500-12 500 nm) recorded at room temperature using an FT-IR spectrometer equipped with a germanium attenuated total reflection (ATR) accessory. First- and second-derivative and standard normal variate (SNV) data pretreatments were applied to the recorded spectra, which were analyzed using partial least squares (PLS) regression analysis, factorial discriminant analysis (FDA), and soft independent modeling of class analogy (SIMCA). In general, when an attenuated wavelength range (6800-11 500 nm) rather than the whole spectrum (2500-12 500 nm) was studied, higher correct classification rates were achieved. An overall correct classification of 93.3% was obtained for honeys by PLS discriminant analysis, while FDA techniques correctly classified 94.7% of honey samples. Correct classifications of up to 100% were achieved using SIMCA, but models describing some classes had very high false positive rates.  相似文献   

11.
White household paints are commonly encountered as evidence in the forensic laboratory but they often cannot be readily distinguished by color alone so Fourier transform infrared (FT-IR) microscopy is used since it can sometimes discriminate between paints prepared with different organic resins. Here we report the first comparative study of FT-IR and Raman spectroscopy for forensic analysis of white paint. Both techniques allowed the 51 white paint samples in the study to be classified by inspection as either belonging to distinct groups or as unique samples. FT-IR gave five groups and four unique samples; Raman gave seven groups and six unique samples. The basis for this discrimination was the type of resin and/or inorganic pigments/extenders present. Although this allowed approximately half of the white paints to be distinguished by inspection, the other half were all based on a similar resin and did not contain the distinctive modifiers/pigments and extenders that allowed the other samples to be identified. The experimental uncertainty in the relative band intensities measured using FT-IR was similar to the variation within this large group, so no further discrimination was possible. However, the variation in the Raman spectra was larger than the uncertainty, which allowed the large group to be divided into three subgroups and four distinct spectra, based on relative band intensities. The combination of increased discrimination and higher sample throughput means that the Raman method is superior to FT-IR for samples of this type.  相似文献   

12.
The present study reports a green chemistry approach for the biosynthesis of nano-zinc aluminate by a microwave method using high purity metal nitrates and aloe vera plant extract. Aloe vera extract simplifies the process and provides an alternative process for a simple and economical synthesis of nanocrystalline zinc aluminate. It is prepared by conventional and microwave method by with and without using the plant extract for comparison purpose. The obtained nanomaterials were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), high resolution scanning electron microscopy (HR-SEM), energy dispersive X-ray analysis (EDX), high resolution transmission electron microscopy (HR-TEM) diffuse reflectance spectroscopy (DRS) and photoluminescence (PL) spectroscopy. The XRD confirmed the formation of cubic structure of zinc aluminate. The formation of zinc aluminate phase is also confirmed by FT-IR. The change in morphology from nanorods to nanosheets from the conventional method to microwave method is clearly shown by HR-SEM. The optical properties were determined by DRS and PL spectra.  相似文献   

13.
Near-infrared Raman spectroscopy has been used for species identification of pure microbial specimens for more than a decade. More recently, this optical method has been extended to the analysis of specimens containing multiple species. In this report, we demonstrate rapid, reagent-free quantitative analysis of a simplified model of oral plaque containing three oral bacteria species, S. mutans, S. sanguis, and S. gordonii, using near-infrared Raman spectroscopy. Raman spectra were acquired from bacterial mixtures in 200 seconds. A prediction model was calibrated by the partial least squares method and validated by additional samples. On a scale from 0 to 1, relative fractions of each species could be predicted with a root mean square error of 0.07. These results suggest that near-infrared Raman spectroscopy is potentially useful in quantification of microbial mixtures in general and oral plaques in particular.  相似文献   

14.
The interaction of N,N-dimethyl formamide (DMF) and N,N-dimethyl acetamide (DMA) with methanol in solution mixtures was studied using Fourier transform infrared-attenuated total reflection (FT-IR/ATR) spectroscopy. The concentration-dependent FT-IR/ATR spectra of DMF/methanol and DMA/methanol mixtures were recorded in the wavenumber range 4000-650 cm(-1) to investigate wavenumber shifts as a consequence of hydrogen bonding interactions. In combination with two-dimensional correlation spectroscopy (2D-COS), the positional fluctuations observed in the ν(C=O) and ν(O-H) regions of DMF/DMA and methanol, respectively, have been discussed in terms of changing populations of differently hydrogen-bonded and interacting species of the same and different component molecules.  相似文献   

15.
Crystalline surface species were observed at the surface of polyamide 12 materials upon accelerated aging. After detection of the depositions with scanning electron microscopy (SEM), the crystalline surface precipitations were analyzed with Fourier transform infrared (FT-IR) and Raman imaging microscopy. These surface species were supposed to be cyclic oligomers (dimer and trimer) of the PA12 monomer laurolactam, which are usually present in polyamide materials and tend to migrate to the surface when the material is subjected to accelerated aging. The evidence for the chemical identity of the crystalline surface structures to be mainly the cyclic dimer and trimer of laurolactam was given by melting-point identification and mass spectroscopic analysis of the methanol eluate of the surface. The Raman and FT-IR spectra of the mixture were extracted from the recorded images.  相似文献   

16.
A new method for on-line monitoring of fermentations using mid-infrared (MIR) spectroscopy has been developed. The method has been used to predict the concentrations of glucose and ethanol during a baker's yeast fermentations. A completely automated flow system was employed as an interface between the bioprocess under study and the Fourier transform infrared (FT-IR) spectrometer, which was equipped with a flow cell housing a diamond attenuated total reflection (ATR) element. By using the automated flow system, experimental problems related to adherence of CO(2) bubbles to the ATR surface, as well as formation of biofilms on the ATR surface, could be efficiently eliminated. Gas bubbles were removed during sampling, and by using rinsing steps any biofilm could be removed from the ATR surface. In this way, constant measuring conditions could be guaranteed throughout prolonged fermentation times (approximately 8 h). As a reference method, high-performance liquid chromatography (HPLC) with refractive index detection was used. The recorded data from different fermentations were modeled by partial least-squares (PLS) regression comparing two different strategies for the calibration. On the one hand, calibration sets were constructed from spectra recorded from either synthetic standards or from samples drawn during fermentation. On the other hand, spectra from fermentation samples and synthetic standards were combined to form a calibration set. Differences in the kinetics of the studied fermentation processes used for calibration and prediction, as well as the precision of the HPLC reference method, were identified as the main chemometric sources of error. The optimal PLS regression method was obtained using the mixed calibration set of samples from fermentations and synthetic standards. The root mean square errors of prediction in this case were 0.267 and 0.336 g/L for glucose and ethanol concentration, respectively.  相似文献   

17.
A simple method based on diffuse reflectance coupled with infrared Fourier transform spectroscopy (DRIFTS) has been developed for the quantification and the characterization of sedimentary (or soil, peat, etc.) humic substances. Under optimized conditions, the quantification of humic substances or total organic matter is possible with DRIFTS at a frequency of 2930 cm(-1) using whole dry sediment samples. A study of the operational parameters that affect the DRIFTS signal shows the importance of normalizing analysis conditions, especially the diffuse reflectance accessory alignment, the particle size and compaction, and the homogeneity of the powdered samples, to obtain reproducible quantitative analyses. The quantification of total humic substances by DRIFTS correlates well with the concentrations determined using classical extraction methods. DRIFTS analysis requires only a few minutes instead of tedious extractions of humic substances. Moreover, the distribution of total organic matter and of fulvic acids, humic acids, and humin can also be obtained. Analysis of natural samples indicates that a calibration using humic material representative of the studied area provides the most accurate quantification. The fast screening of organic matter fractions by DRIFTS on intact natural samples provides useful quantitative and qualitative information that can be used in environmental or monitoring studies.  相似文献   

18.
Thermogravimetric analysis (TGA) and Fourier transform-infrared spectroscopy (FT-IR) techniques for water content determination were compared with a neutron characterization technique, prompt gamma activation analysis (PGAA). Residual H content in the samples, heat treated at various temperatures, was measured with PGAA and compared with the results obtained from TGA. Two major difficulties in TGA were overlapping of mass loss regimes due to removal of different species and residual water that could not be removed, even though the samples were heated above 900 degrees C. After 3 h of heat treatment at 900 degrees C, 0.007% mass fraction H remained in the sample. FT-IR spectra confirmed the presence of H semiquantitatively. It is concluded that residual H remains even after high-temperature treatments.  相似文献   

19.
Spectral characterization of eucalyptus wood   总被引:1,自引:0,他引:1  
The main difficulties in wood and pulp analyses arise principally from their numerous components with different chemical structures. Therefore, the basic problem in a specific analytical procedure may be the selective separation of the main carbohydrate-derived components from lignin due to their chemical association and structural coexistence. The processing of the wood determines some structural modification in its components depending on the type of wood and the applied procedure. Fourier transform infrared (FT-IR) spectrometry and X-ray diffraction have been applied to analyze Eucalyptus g. wood chips and unbleached and chlorite-bleached pulp. The differences between samples have been established by examination of the spectra of the fractions obtained by successive extraction (acetone extractives, acetone free extractive samples, hemicelluloses, and lignins) by evaluating the derivative spectra, band deconvolution, etc. The energy and the hydrogen bonding distance have been evaluated. The relationship between spectral characteristics and sample composition has been established, as well as the variation of the degree of crystallinity after pulping and bleaching. The integral absorption and lignin/carbohydrate ratios calculated from FT-IR spectra of the IR bands assigned to different bending or stretching in lignin groups are stronger in the spectrum of eucalyptus chips than those from brown stock (BS) pulp spectra because of the smaller total amount of lignin in the latter. FT-IR spectra clearly show that after chlorite bleaching the structure of the wood components is partially modified or removed. Along with FT-IR data, the X-ray results confirmed the low content of lignin in the pulp samples by increasing the calculated values of the crystalline parameters. It was concluded that FT-IR spectroscopy can be used as a quick method to differentiate Eucalyptus globulus samples.  相似文献   

20.
The application of laser-induced breakdown spectroscopy to the analysis of single biological microparticles (bioaerosols) is described, exemplified here for a range of pollens. Spectra were recorded by exposure of the pollen to a single laser pulse from a Nd:YAG laser (lambda = 1064 nm, Ep approximately 30 mJ). The intensities of the single-pulse laser-induced breakdown spectra fluctuated dramatically, but an internal signal calibration procedure was applied that referenced elemental line intensities to the carbon matrix of the sample (represented by molecular bands of CN and C2). This procedure allowed us to determine relative element concentration distributions for the different types of pollen. These pollens exhibited some distinct concentration variations, for both major and minor (trace) elements in the biomatrix, through which ultimately individual pollens might be identified and classified. The same pollen samples were also analyzed by Raman microscopy, which provided molecular compositional data (even with spatial resolution). These data allowed us to distinguish between biological and nonbiological specimens and to obtain additional classification information for the various pollen families, complementing the laser-induced breakdown spectroscopy measurement data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号