首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 109 毫秒
1.
研究Duffing 振子和分数傅里叶变换在Chirp类水印检测中的性能比较。首先分析目前分数傅里叶变换检测Chirp类水印的不足, 然后将嵌入在载体低频小波域的非周期Chirp信号通过分块平滑转换为单频周期信号, 利用Duffing振子阵列检测器检测微弱的周期信号。实验表明, 当信噪比为-41 dB时, Duffing振子仍然能有效检测到水印的存在, 此时分数傅里叶变换失效; 而当信噪比较高时, 分数傅里叶变换计算较Duffing振子检测简单。  相似文献   

2.
针对引信产品测试中的非周期梯形增幅波信号提出了基于Duffing振子的梯形增幅波弱信号检测的新方法。该方法利用梯形增幅信号的特征进行分段预处理,将非周期信号的检测转换为Duffing振子的准周期信号检测,避免了低信噪比下基于Duffing振子的微弱非周期信号检测受混沌振子检测机理的限制这一难点。仿真实验证明,该方法有效地检测出了低信噪比下的微弱非周期梯形增幅信号。结果表明,该方法能有效检测出引信测试中的梯形增幅波信号,并对零均值色噪声具有较强的抑制能力。  相似文献   

3.
传统的微弱信号检测在检测信噪比很低的信号时效果不理想,针对在强噪声背景下微弱信号的检测问题,提出了一种由单Duffing振子建立混沌系统的非线性恢复力项用-x~5+x~7来代替的改进方法,与传统Duffing振子检测系统相比具有更强的鲁棒性.阐述了基于相平面变化进行微弱信号检测的工作原理.对时间尺度进行变换,实现了对任意未知微弱周期信号的检测,通过对噪声背景中的微弱周期信号检测进行仿真实验,最后通过真实的故障轴承信号检测验证,都获得较好的效果,为工程实际应用提供了一种可鉴的方法.  相似文献   

4.
基于Duffing混沌振子检测微弱信号方法,提出一种DSSS/BPSK信号载波检测的新方法.该方法先介绍了Duffing振子检测微弱信号的技术.接着利用Duffing振子对小周期信号的敏感性和对噪声的免疫力,对DSSS/BPSK信号进行非线性平方变换能够检测出淹没在强噪声背景中的正弦信号.仿真结果表明.该方法能够在信噪比很低的情况下检测出DSSS/BPSK信号.而且性能良好.  相似文献   

5.
混沌理论微弱信号检测方法的可行性分析   总被引:13,自引:0,他引:13  
论述了混沌理论微弱信号检测方法的可行性,提出了利用混沌理论检测微弱正弦周期信号的仿真模型,采用了含有78个混沌振子的阵列来检测微弱正弦信号的幅值、频率、相位,从而达到高信噪比的测量.此方法是目前信噪比门限较低的时域信号处理方法,因而具有广泛的应用前景.  相似文献   

6.
混沌振子实现微弱周期小信号的检测   总被引:2,自引:3,他引:2  
通过对混沌振子Duffing方程及其检测原理的介绍,发现混沌振子对周期小信号具有敏感特性,能够在强噪声环境下实现对微弱周期小信号的检测。Matlab实验仿真和分析证明了采用混沌振子Duffing检测微弱周期小信号的可行性。  相似文献   

7.
戴冲  姜向东 《微计算机信息》2008,24(10):122-123
分析了Duffing振子的混沌运动,利用振子相变对与参考信号频差较小的周期小信号具有敏感性和对噪声的免疫力检测微弱周期信号,检测不同频率的信号需要不同频率的参考信号,通过调整系统参数使得振子对不同频率的信号检测具有普遍性.将传感器周期性干扰信号作为对内驱动信号的摄动加入混沌检测中,通过观察混沌振子的状态变量的时间历程图,发现混沌检测系统处于间歇混沌状态,证明了采用Duffing混沌振子检测微弱周期小信号的可行性.  相似文献   

8.
基于混沌振子的微弱ASK信号解调   总被引:1,自引:0,他引:1  
针对微弱数字调制信号的解调问题,提出了利用混沌振子对周期小信号的敏感性和对噪声的免疫力来解调强噪声中幅移键控(ASK)信号的新方法。详细阐述了基于duffing振子的微弱信号检测方法,结合ASK信号的调制方式,分析了利用duffing振子解调微弱ASK信号的基本思想,并提出利用功率谱熵判别系统状态的新方法。仿真表明,在信噪比为-20dB时,该方法实现了对ASK信号的解调,且抗噪性能优于传统的解调方法。  相似文献   

9.
基于混沌相平面变化的微弱信号检测   总被引:2,自引:0,他引:2  
针对超低信噪比条件下信号难于检测这一问题,提出了一种基于Duffing振子的微弱信号检测新方法,采用梅尔尼科夫函数给出了系统出现混沌状态的阈值,分析了Duffing振子动力学系统随参数变化的特性,研究了系统在临界参数附近变化时会出现混沌到大周期相变的特征,并根据此特点设计了一种微弱信号检测模型;理论分析和仿真实验都表明,提出的检测方法对任何零均值噪声具有免疫力,对正弦信号参量变化极为敏感,且可以准确检测出信噪比低达-49.5dB的微弱正弦信号.  相似文献   

10.
介绍了Duffing振子的混沌运动特征以及应用Duffing振子检测微弱信号的方法.提出了一种改进的Duffing振子模型,仿真实验表明该模型可以有效地检测微弱正弦信号,可检信噪比范围可达到,灵敏度达到.  相似文献   

11.
基于Duffing振子的弱Chirp信号检测与参数估计   总被引:1,自引:0,他引:1  
文忠  李立萍 《自动化学报》2007,33(5):536-539
在超低信噪比下, 针对 chirp 信号常规检测方法均失效. 提出一种超低信噪比下 chirp 信号的检测与参数估计方法. 该方法利用 Duffing 振子构建广义滤波器组,并以其最大 Lyapunov 指数的符号作为系统状态的判断标准. 根据 chirp 信号的特征, 将 chirp 信号的检测问题转化为一个周期信号检测的问题, 使其满足 Duffing 振子的检测条件. 获得调频斜率的估计后, 构造一个新序列, 再利用 Duffing 振子系统估计初频. 为提高信噪比, 本文还提出分段相关平滑的方法, 使检测和估计性能得到提高.  相似文献   

12.
基于小波与分数傅里叶变换的图像水印算法   总被引:3,自引:0,他引:3       下载免费PDF全文
载体图像的空域隐藏Chirp信号可以通过分数傅里叶变换在变换域中进行盲检测。为了提高该算法的鲁棒性能,该文研究直接离散化方法,合理选取分数傅里叶变换的算子阶数,将Chirp 信号隐藏在图像信号的低频小波域中。仿真实验表明,改进后的水印算法提高了直接在空域进行信息隐藏的鲁棒性。  相似文献   

13.
Duffing混沌振子系统对周期小信号具有敏感性,对噪声具有免疫性。对此进行了特性分析,讨论了振子方程参数变化带来的影响。对Duffing振子微弱信号检测的原理进行了实验验证,以LCG50陀螺为例,用Duffing振子检测方法对其周期误差信号进行了检测和分析,基于检测结果设计了FIR滤波器对MEMS陀螺周期误差信号滤波,结果表明:Duffing振子方法在MEMS陀螺微弱信号检测与信号处理中的可行性和有效性。  相似文献   

14.
针对常规混沌阵列检测轨道移频信号所带低频信息存在复杂度高和精确性低的问题,对常规方法进行改进,提出了一种基于变步长阵发混沌的低频信号检测方法,该方法只运用一个Duffing振子,通过设置一组步长可以覆盖整个待检测低频信号所在频段的序列,来实现对轨道低频信号的检测。结合Duffing混沌系统检测信号的优越性,分析了利用变步长阵发混沌法检测低频信号的可行性,给出了此方法检测低频信号的步骤,并从理论上计算了可发生阵发混沌的步长序列,然后利用Matlab/Simulink搭建仿真模型进行仿真验证。结果表明,可用变步长阵法混沌法对低频信号进行检测。最后再利用阵发混沌周期法对仿真结果进行进一步研究,得出精确的低频信号。变步长阵发混沌法的检测性能在精确性及系统复杂度方面都优于传统的轨道低频信号检测方法,并且可以实现低信噪比下低频信号的检测。  相似文献   

15.
提出了一种基于Duffing混沌振子弱正弦信号的检测方法;为了能够检测更加微弱正弦信号的频率,对Duffing系统相关参数加以调整,使系统阈值与微弱正弦信号幅值大致相当;采用Duffing振子阵列法检测微弱正弦信号频率,在检测精度较高的前提下,缩小振子间频率比,增加振子数量;实验仿真表明可以检测幅值最低为0.002V的弱正弦信号。  相似文献   

16.
刘立  孙军 《计算机科学》2005,(6):667-670
分析了During方程的基本形式以及During振子的混沌运动,阐述了基于相平面变化进行微弱信号检测的工作原理,并推导出系统发生间歇混沌现象的频差条件和相位差对于系统特性的影响。试验证明:该振子对与参考信号频差较小的周期小信号具有敏感性,对白噪声和与参考信号频差较大的干扰信号具有免疫力。  相似文献   

17.
为解决超声导波激励信号频率单一问题,设计了一种基于直接数字频率合成器(DDS)AD9854的宽频超声导波信号激励电路。在激励电路设计过程中,激励信号是由DDS利用正弦信号的相位与时间线性变化的特性,通过查询芯片内部存储的正弦信号表来实现频率的合成,并快速生成Chirp信号。采用椭圆低通滤波器消除DDS的杂散干扰,采用电压放大电路和功率放大电路进行信号两级放大,实现±25 V、100 kHz~1 MHz的Chirp信号输出。实验结果表明,超声导波激励电路软硬件设计合理,不仅能激励出超声导波检测所需要的宽频Chirp信号,还能明显区分出铝板上有无腐蚀缺陷,适用于激励多种不同中心频率的超声导波传感器。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号