首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A comparative study of the oxidative destruction of the monomer face-centered cubic (FCC) lattice and various polymer [dimeric (D), orthorhombic (O), tetragonal (T), and rhombohedral (R)] phases of C60 in an atmosphere of oxygen has been performed in the temperature range of 100–500°C with the use of a flow microunit connected to a gas chromatograph. From direct measurements of the content of CO2 in the gaseous products of destruction, the temperature dependences of oxidation rates are measured for the materials under study. It has been established that, with respect to stability against oxidative destruction, different forms of C60 may be arranged as follows: the monomer FCC phase of C60 > D > O > T > R. The reasons behind this tendency are discussed.  相似文献   

2.
Precision measurements of the specific heat at constant pressure, C p , of high-purity samples of the normal alkanes C7-C9 in the supercritical region of state parameters are carried out using an adiabatic flow calorimeter equipped with a calorimetric flowmeter. Currently, this is the most accurate method. The coordinates of maxima of C p on isobars are determined. A generalized equation for the line of the maxima of C p in reduced coordinates π-τ and an equation for C p along this line in corresponding states for the homologous series are obtained in terms of thermodynamic similarity theory using the most reliable published data. Existing experimental methods for determining the critical parameters of individual substances are analyzed.  相似文献   

3.
Silicophosphate glasses of nominal composition (P2 O 5 50%-SiO2 30%-Na2O 20%) and Nd2 O 3 additive (0.5 and 2 wt%) were prepared and dielectric behavior has been studied over a temperature range (302–483 K) in the frequency range (0.5 - 3243 kHz). Frequency dependence of AC conductivity (σ ac), has been explored using the universal power law. Disparity of the frequency exponent (s) with temperature was examined in terms of diverse conduction mechanisms. The principal conduction mechanisms were found correlated to both barrier hopping (CBH) and quantum mechanical tunneling (QMT) models. Temperature dependence of σ ac (ω) showed a linear increase with different frequencies. In addition, the capacitance, loss tangent, dielectric loss and dielectric constant were calculated over variable temperature ranges and frequencies.  相似文献   

4.
Anhydrous ammonium pentaborate NH4B5O8 has been synthesized by thermal dehydration of larderellite NH4[B5O7(OH)2] · H2O at a temperature of 290°C for 7 h. The crystal structure has been determined from the X-ray powder diffraction data: a = 7.58667(5) Å, b = 12.00354(8) Å, c = 14.71199(8) Å, R p = 6.23, R wp = 7.98, R B = 12.7, R F = 8.95, and β-KB5O8 structure type. The double interpenetrating framework is formed by pentaborate groups, each consisting of a boron-oxygen tetrahedron and four triangles, in which all oxygen atoms are bridging. The thermal behavior of the NH4B5O8 compound has been investigated using thermal X-ray diffraction. As for other pentaborates of this type, the thermal expansion of the NH4B5O8 compound is anisotropic and reaches a maximum along the a axis. The thermal expansion coefficients are as follows: α a = 39 × 10?6, α b = 6 × 10?6, α c = 20 × 10?6, and α V = 65 × 10?6 °C?1.  相似文献   

5.
A cathode material for lithium-ion batteries–LiNi1/3Co1/3Mn1/3O2–was prepared by solution combustion synthesis and characterized by XRD, SEM, and galvanostatic charge/discharge cycling. The sample calcined at 950°C for 10 h showed best charge/discharge performance. An initial discharge capacity (C) of 150.5 mA h g–1 retained 95.7% of its value after 75 charge/discharge cycles at Ic = 14 mA g–1 (0.2C rate), Id = 70 mA g–1 (0.5C rate).  相似文献   

6.
The density d at a temperature of 25°C is measured by the hydrostatic weighing method, the Vickers microhardness H V is determined, and the fluctuation free volume fraction f g is calculated for glasses in the SrO-B2O3-SiO2 system with a constant strontium oxide content in the range from 35 to 45 mol %. It is demonstrated that the quantities H V and f g decrease and the density d increases with an increase in the SrO content.  相似文献   

7.
It is difficult to research on the surface structure of amorphous phase in fly ash during leaching reaction due to crystalline phase and complex structure. In the present work, in order to reveal the effects of leaching reaction on the surface structure of amorphous phase in fly ash, the modelling CaO-Fe2O3-Al2O3-SiO2 glass was prepared by the traditional melting methods. The leaching reaction of CaO-Fe2O3-Al2O3-SiO2 glass with 7.5 M KOH was investigated by spectroscopy, spectrophotometer and wet chemical method. The results show that the content of Q 1, Q 2, Q 3 and Q 4 of glass without corrosion was 4.21, 9.51, 23.03 and 52.55%, respectively, which shows that the network polymerization of glass is compact. The leaching reaction of glass can be described by the following equation: dS/dt = k/(r + S 0). Leaching in KOH for various times induces the content of Q 4 and Q 1 to be decreased, and Q 2 and Q 3 increased, resulted in the depolymerization of network and the surface glass dissolved in alkaline solution to form a gel phase. In stage one of leaching reaction, the rate of iron ion leached from glass surface was slow, which resulted in the small slope of straight-line relationship of leaching curve. In the following stage, the leaching rate of iron ion increased with the prolongation of time.  相似文献   

8.
A series of well-defined novel amphiphilic temperature-responsive graft copolymers containing PCL analogues P(αClεCL-co-εCL) as the hydrophobic backbone, and the hydrophilic side-chain PEG analogues P(MEO2MA-co-OEGMA), designated as P(αClεCL-co-εCL)-g-P(MEO2MA-co-OEGMA) have been prepared via a combination of ring-opening polymerization (ROP) and atom transfer radical polymerization (ATRP). The composition and structure of these copolymers were characterized by 1H NMR and GPC analyses. The self-assembly behaviors of these amphiphilic graft copolymers were investigated by UV transmittance, a fluorescence probe method, dynamic light scattering (DLS) and transmission electron microscopy (TEM) analyses. The results showed that the graft copolymers exhibited the good solubility in water, and was given the low critical temperature (LCST) at 35(±1) °C, which closed to human physiological temperature. The critical micelle concentrations (CMC) of P(αClεCL-co-εCL)-g-P(MEO2MA-co-OEGMA) in aqueous solution were investigated to be 2.0 × 10?3, 9.1 × 10?4 and 1.5 × 10?3 mg·mL?1, respectively. The copolymer could self-assemble into sphere-like aggregates in aqueous solution with diverse sizes when changing the environmental temperature. The vial inversion test demonstrated that the graft copolymers could trigger the sol-gel transition which also depended on the temperature.  相似文献   

9.
The thermal properties of compounds of the general formula Bi m + 1 Fe m ? 3 Ti3O3m + 3, which are layered perovskite-like phases of the Aurivillius type, are investigated as a function of their composition. It is demonstrated that the temperature of decomposition of the Bi m + 1 Fe m ? 3 Ti3O3m + 3 compounds decreases with an increase in the thickness of perovskite-like layers alternating in the structure and that the composition dependence of the temperature of the structural transition observed in these compounds exhibits a more complex behavior. The linear thermal expansion coefficients of all the compounds under investigation are found to be virtually independent of the composition.  相似文献   

10.
Explored was the influence of compacting pressure (P) and green density (ρ) on the properties of Zr-doped mineral-like pyrochlore ceramics Y2(Ti1 – x Zr x )2O7 (x ≤ 0.3) prepared by SHS method. The optimal ρ values that provide minimal porosity and maximal mechanical strength of synthesized ceramics were found. An increase in ρ was found to decrease combustion temperature and increase pyrochlore lattice parameter a. Green density was also found to affect phase composition of the SHS-produced ceramics under study.  相似文献   

11.
Based on the empirical pseudo-potential method (EPM), the symmetric and anti-symmetric pseudo-potential form factors have been adjusted to match the calculated energy gaps of InP with the corresponding experimental values. The adjusted symmetrical and anti-symmetrical form factors at G(1,1,1) have been used to calculate the polarity of the considered material. The elastic constants C 11, C 12 and C 44 of InP have been obtained. The knowledge of these constants helps us to determine their related elastic parameters such as bulk (B u ), shear (C s ) and Young’s (Y 0) moduli. Other important parameters such as Poisson’s ratio (σ ), linear compressibility (C 0 ), Cauchy ratio (C a ) , Born ratio (B 0), isotropy factor (A ), bond stretching (α ), bond binding force (β ) and internal strain parameter (ζ ) for InP have also been calculated. The variation of all studied quantities with temperature and pressure has been investigated. Our results show a good agreement with the available experimental data. Most of our data may be taken as references especially for high values of temperature and pressure.  相似文献   

12.
The crystal structure of a low-temperature modification of the Li12Zn4(P2O7)5 compound has been determined by full-profile analysis from the X-ray powder diffraction data. The compound crystallizes in the monoclinic crystal system (a = 5.130(1) Å, b = 13.454(1) Å, c = 8.205(1) Å, β = 90.36(1)°, space group P21/n, Z = 4) and has a framework structure in which the zinc and lithium atoms statistically occupy equivalent positions.  相似文献   

13.
The crystal structure of Pb6O[(Si6Al2)O20)] is investigated using X-ray diffraction. The compound has tetragonal symmetry, space group I4/mmm, a = 11.7162(10) Å, c = 8.0435(12) Å, and V = 1104.13(2) Å3. The structure is refined to R 1 = 0.036 for 562 unique reflections with [F 0] ≥ 4σF. The structure contains two symmetrically independent positions of the Pb2+ cations coordinated by five O atoms (Pb2+-O2? = 2.34–2.68 Å). The TO4 tetrahedra (T = Si, Al) form tubular [(Si6Al2)O20] chains extended along the c axis. The O4 oxygen atom is not bonded to the Si and Al atoms and is octahedrally coordinated by six Pb atoms with the formation of an oxo-centered OPb6 octahedron. The assumption is made that, in some of lead silicate and aluminosilicate glasses, a number of oxygen atoms are located outside the tetrahedral structure and represent segregation centers of the Pb2+ cations due to the formation of oxo-centered complexes.  相似文献   

14.
In this study, polymeric hindered amine light stabilizers (HALS)-functionalized silica coated rutile titanium dioxide (TiO2-SiO2) nanoparticles were prepared by encapsulating commercially available TiO2-SiO2 nanoparticles with methyl methacrylate (MMA) and 1,2,2,6,6-pentamethyl-4-piperidyl methacrylate (PMPM) copolymers via miniemulsion polymerization. The obtained functional (TiO2-SiO2/P(MMA-co-PMPM)) fillers have been added to polyurethane acrylate (PUA) oligomers to get UV-curable nanocomposite coatings. The functionalization of the TiO2-SiO2 nanoparticles with polymeric HALS has been confirmed by infrared spectra (IR), thermogravimetric (TG), and X-ray photoelectron spectroscopy (XPS) analyses. The scanning electron microscope (SEM) micrographs indicated that homogeneous dispersion of TiO2-SiO2/P(MMA-co-PMPM) composite nanoparticles resulted in improved transparency and mechanical properties of the UV-curable PUA coatings. Rhodamine B (Rh.B) photodegradation measurement confirmed the excellent UV-shielding performance of PUA nanocomposite coatings containing TiO2-SiO2/P(MMA-co-PMPM). The addition of TiO2-SiO2/P(MMA-co-PMPM) composite nanoparticles reduced the UV-curable PUA coatings degradation rate dramatically. The UV-aging resistance of PUA coatings was improved significantly. Over all, the combination of TiO2-SiO2 nanoparticles and polymeric HALS offers an attractive way to fabricate the multi-functional fillers, which can be used to improve the mechanical properties and UV-aging resistance of PUA coatings simultaneously.  相似文献   

15.
In this study, we developed an original approach for preparing cellulose-coated magnetite nanoparticles (NPs). Two novel Schiff bases (PDA-g-DAC) and [Bz-(PDA-g-DAC)] were synthesized via condensation reactions of periodate oxidized micro-crystalline cellulose (DAC) with o-phenylene diamine (PDA) to obtain its azomethine derivative with 85% yield. Subsequently, the functionalization of (PDA-g-DAC) with benzil (Bz) yields the tetraaza macrocycle [Bz-(PDA-g-DAC)]. The physicochemical characterization of the condensation products was performed using 13CNMR, FTIR, ATG, DSC, and X-ray diffraction techniques. Magnetic nanomaterial-based Schiff base cellulose was successfully prepared using in situ chemical co-precipitation of coordinated ferric and ferrous ions in cellulose Schiff base matrix under optimized conditions, and then, its magnetic properties were characterized. The results demonstrated that the Fe3O4 NPs coated with [Bz-(PDA-g-DAC)] were homogeneously coated in the matrix under ultrasonic irradiation with the saturation magnetization of 69.50 emu g?1. In addition, XRD line broadening analysis showed that the average particle size of the NPs was 37.3 nm. Furthermore, FTIR spectra demonstrated that [Bz-(PDA-g-DAC)] concavity was anchored to magnetite Fe3O4 NPs through azomethine groups. Vibrating sample magnetometry (VSM) of [Bz-(PDA-g-DAC)@Fe3O4] magnetic nanocomposite samples showed the typical behavior of ferromagnetism. This study provided a green and facile method to inhibit magnetic nanoparticle aggregation. Activity results revealed that the prepared [Bz-(PDA-g-DAC)@Fe3O4] catalyst shows the maximum activity for degradation of Acid Yellow 17 (AY17) compared to other prepared catalysts. After degradation reaction, the [Bz-(PDA-g-DAC)@Fe3O4] catalyst was recovered from the reaction mixture via an external magnet and used for further five consecutive cycles with excellent catalytic activity, successively, which was comparable to the fresh catalyst. The catalyst degradation efficiency and its easy separation exhibited that [Bz-(PDA-g-DAC)@Fe3O4] catalyst is a promising material for the removal of AY17 from aqueous solutions in green chemistry perspectives.  相似文献   

16.
A new compound, CdPb2O2Cl2, is synthesized by the method of solid-phase reactions. The compound has monoclinic symmetry, space group C2/m, a = 12.392(8) Å, b = 3.8040(14) Å, c = 7.658(5) Å, β = 122.64(5)°, and V = 304.0(3) Å3. The structure contains one symmetrically independent position of the Pb2+ cation coordinated by three O2? anions (Pb2+-O2? = 2.29–2.34 Å) and five Cl? anions (Pb2+-Cl? = 3.35–3.57 Å). The Cd2+ cation has a symmetric coordination with the formation of two bonds Cd-O = 2.15 Å and four bonds Cd-Cl = 2.73 Å. The oxygen atom is tetrahedrally coordinated by three Pb2+ cations and one Cd2+ cation, which leads to the formation of oxo-centered heterometallic OPb3Cd tetrahedra. The tetrahedra are linked together into chains through common Pb atoms and into layered complexes due to sharing of the equatorial Cd atoms. The chlorine atoms are located above the cavities of the oxo-centered layer.  相似文献   

17.
We investigated the effects of different Cu weight ratio on θ or γ-Al2O3 which were impregnated with platinum in terms of catalytic activity for propane dehydrogenation and physicochemical properties. 1.5 wt% Pt, 0-10 wt% Cu catalyst supported on θ-Al2O3 or γ-Al2O3 was prepared by incipient wetness co-impregnation. Enhanced Pt dispersion by increasing Cu contents in γ-Al2O3 supported catalyst was confirmed via XRD and XPS. Pt and CuO was separated in Pt-Cu/θ-Al2O3, but Pt-Cu alloy was identified after reduction treatment. Also, adding Cu in Pt/Al2O3 makes catalyst’s acidity lower and this property led to increased propylene yield in propane dehydrogenation. However, Pt3Cu was not good for yield of PDH, which was confirmed in Pt-10Cu/θ-Al2O3 through XRD.  相似文献   

18.
The effect of alumina crystalline phases on CO and CO2 methanation was investigated using alumina-supported Ni catalysts. Various crystalline phases, such as α-Al2O3, θ-Al2O3, δ-Al2O3, η-Al2O3, γ-Al2O3, and κ-Al2O3, were utilized to prepare alumina-supported Ni catalysts via wet impregnation. N2 physisorption, H2 chemisorption, temperature-programmed reduction with H2, CO2 chemisorption, temperature-programmed desorption of CO2, and X-ray diffraction were employed to characterize the catalysts. The Ni/θ-Al2O3 catalyst showed the highest activity during both CO and CO2 methanation at low temperatures. CO methanation catalytic activity appeared to be related to the number of Ni surface-active sites, as determined by H2-chemisorption. During CO2 methanation, Ni dispersion and the CO2 adsorption site were found to influence catalytic activity. Selective CO methanation in the presence of excess CO2 was performed over Ni/γ-Al2O3 and Ni/δ-Al2O3; these substrates proved more active for CO methanation than for CO2 methanation.  相似文献   

19.
Mixed micellization study of cationic surfactants viz. alkyltrimethylammonium bromides (CnTAB) and alkyltriphenylphosphonium bromides (CnTPPB) with similar hydrophobic groups (C12-, C14-, and C16-) was performed using tensiometry and UV–visible light spectrophotometry techniques. Critical micelle concentration (CMC) values of the single and binary surfactant mixtures were obtained from a plot of surface tension versus the logarithm of surfactant concentration (C s). The degree of synergy and various mixed micelle parameters like interaction parameter (β), activity coefficients (f m ) and interfacial parameters like surface pressure (π CMC), packing parameter (P), surface excess concentration (Г max), surface tension at the CMC (γ CMC), and minimum area per molecule (A min) were evaluated using the regular solution theory (RST). Thermodynamic parameters were calculated using several proposed models which suggest the mixed micellar system to be more thermodynamically stable than their respective individual components. In addition, a dye solubilization study was performed using a spectrophotometric method to validate the CMC data obtained from tensiometric method. Conductometric measurements were also carried out for the mixture of C12TAB + C12TPPB only as it showed a more negative β, indicating a higher degree of synergism.  相似文献   

20.
The solid-solution regions in the MeSm2S4-MeS and MeSm2S4-Sm2S3 (Me = Ca, Ba) systems are revealed. The average ion, cation, and anion transport number of the synthesized solid electrolytes xSm2S3[Ca(Ba)S] · (100 ? x)Ca(Ba)Sm2S4 (x = 1?10 mol %) are determined by the electromotive force (emf) method with the use of concentration cells with and without transfer. In the phases under investigation, the ion transfer in the temperature range 673–723 K is provided by sulfide ions (\(t_{S^2 } \) = 1.00±0.02). The diffusion coefficients of S2? ions in the solid electrolytes are determined by potentiostatic chronoamperometry. A vacancy mechanism of defect formation is proposed. It is demonstrated that the transport characteristics of the solid electrolytes based on the CaSm2S4 compound are worse than those of the solid electrolytes based on the BaSm2S4 compound.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号