首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Polymer Composites》2017,38(9):2026-2034
Multi‐walled carbon nanotubes (MWCNTs)/polyvinylpyrrolidone (PVP) composite nanofibers having varying amounts of MWCNTs were fabricated with an aim to investigate the potential of such nanofibers as an effective light weight electromagnetic interference (EMI) shielding material in the frequency range of 8.2–12.4 GHz (X‐band). The state of dispersion of MWCNTs in PVP matrix was studied by transmission electron microscopy (TEM) and scanning electron microscopy (SEM). The TEM and SEM analyses confirmed the presence of individual dispersion MWCNTs encapsulated within the electrospun nanofibers and showed MWCNTs/PVP composite nanofiber morphologies with diameters of 150–600 nm. Moreover, the MWCNTs/PVP composite nanofibers were characterized by X‐ray diffraction and Raman spectrophotometer. The thermal stability of composite nanofibers studied from thermogravimetric analysis was increased after addition of MWCNTs to PVP matrix. The EMI shielding efficiency of MWCNTs/PVP composite nanofibers increased up to 42 dB. The MWCNTs/PVP composite nanofibers developed in this study have benefits in being light weight and having effective EMI shielding performance and can be best candidates for a broad range of electronic applications. POLYM. COMPOS., 38:2026–2034, 2017. © 2016 Society of Plastics Engineers  相似文献   

2.
A facile and economic method is developed for the fabrication of new lightweight materials with high electromagnetic interference (EMI) shielding performance, good mechanical properties and low electrical percolation threshold through melt mixing. Electrical properties, DC conductivity, EMI shielding performance and mechanical properties of poly(trimethylene terephthalate) (PTT)/multiwalled carbon nanotube (MWCNT) nanocomposites with varying filler loading of MWCNTs were investigated. High‐resolution transmission electron microscopy was used to determine the distribution of MWCNTs in the PTT matrix. The newly developed nanocomposites show excellent dielectric and EMI shielding properties. Theoretical electrical percolation threshold was achieved at 0.21 wt% loading of MWCNTs, due to the high aspect ratio and the three‐dimensional network formation of MWCNTs. Experimental DC conductivity values were compared with those of theoretical models such as the Voet, Bueche and Scarisbrick models, which showed good agreement. The PTT/3% MWCNT composite showed an EMI shielding value of ~38 dB (99.99% attenuation) with a sample thickness of 2 mm. Power balance was used to determine the actual contribution of reflection, absorption and transmission loss to the total EMI shielding value. The nanocomposites showed good tensile and impact properties and the composite with 2% MWCNTs exhibited an improvement in tensile strength of as much as 96%. © 2018 Society of Chemical Industry  相似文献   

3.
Composites with silica matrix and mixed filler of multiwalled carbon nanotubes (MWCNTs) and BaTiO3 powder were fabricated. Excellent uniform dispersion of MWCNTs can be obtained using a two-step mixing method. Both of the real and imaginary parts of complex permittivity increased with increasing MWCNT content and measured temperature. The electromagnetic interference (EMI) shielding results showed that the absorption mechanism is the main contribution to the total EMI shielding effectiveness (SE). Compared with the EMI SE resulting from reflection, the absorption showed more dependence on the MWCNT content, measured temperature and frequency. The total EMI SE is greater than 20 dB at 25 °C and 50 dB at 600 °C in the whole frequency range of 12.4–18 GHz with a 1.5 mm composite thickness, which suggests that the MWCNT–BaTiO3/silica composites could be good candidates for the EMI shielding materials in the measured frequency and temperature region.  相似文献   

4.
The microstructure, electromagnetic interference (EMI) shielding effectiveness (SE), DC electrical conductivity, AC electrical conductivity and complex permittivity of nanostructured polymeric materials filled with three different carbon nanofillers of different structures and intrinsic electrical properties were investigated. The nanofillers were multiwall carbon nanotubes (MWCNT), carbon nanofibers (CNF) and high structure carbon black (HS-CB) nanoparticles and the polymer was acrylonitrile-butadiene-styrene (ABS). In addition, the EMI SE mechanisms and the relation between the AC electrical conductivity in the X-band frequency range and the DC electrical conductivity were studied. The nanocomposites were fabricated by solution mixing and characterized by uniform dispersion of the nanofillers within the polymer matrix. It was found that, at the same nanofiller loading, the EMI SE, permittivity and electrical conductivity of the nanocomposites decreased in the following order: MWCNT > CNF > CB. MWCNT based nanocomposites exhibited the lowest electrical percolation threshold and the highest EMI SE owning to the higher aspect ratio and electrical conductivity of MWCNT compared to CNF and HS-CB. The AC conductivity in the X-band frequency range was found to be independent of frequency.  相似文献   

5.
This study compares electromagnetic interference (EMI) shielding properties of injection molded versus compression molded multi-walled carbon nanotube/polystyrene (MWCNT/PS) composites, i.e., properties such as EMI shielding effectiveness (EMI SE), electrical conductivity, real permittivity and imaginary permittivity. The injection molded (MWCNT-aligned) samples showed lower EMI shielding properties than compression molded (randomly distributed MWCNT) samples that was attributed to lower probability of MWCNTs contacting each other due to MWCNT alignment. The compression molded samples showed higher electrical conductivity and lower electrical percolation threshold than the injection molded samples. The compression molded samples at MWCNT concentrations of 5.00 and 20.0 wt.% showed real permittivity two times and imaginary permittivity five times greater than the injection molded samples. The EMI SE for the compression molded samples at MWCNT concentrations of 5.00 and 20.0 wt.% was 15.0 and 30.0 dB, respectively, significantly greater than EMI SE for the injection molded samples. Lower EMI SE for the injection molded samples was ascribed to lower electrical conductivity, real permittivity (polarization loss) and imaginary permittivity (Ohmic loss). Comparison of the EMI shielding properties of the compression molded versus injection molded samples confirmed that EMI shielding does not require filler connectivity; however it increases with filler connectivity.  相似文献   

6.
To develop a rubber composite with excellent electrical properties, a sort of synthetic rubber, acrylonitrile butadiene rubber (NBR) with CN dipoles as matrix, multi‐walled carbon nanotubes (MWCNTs) as filler, was synthesized. NBR composites reinforced with 0.5, 1.5, 3, 10, and 20 phr MWCNT contents were fabricated by latex technology. The electrical conductivity, dielectric characteristics, and electromagnetic interference (EMI) shielding effectiveness at room temperature of NBR/MWCNT composites were investigated. MWCNTs were found well dispersed into NBR matrix even for 20 phr content by FESEM observation. The electrical conductivity increased with an increment of MWCNT content. The dielectric constant was over 104 at 103 Hz frequency for 10 and 20 phr MWCNTs‐reinforced NBR composites. It was attributed to the increased electrons and interface polarization. The improved conductivity and dielectric permittivity resulted in an enhanced EMI shielding effectiveness. The EMI shielding effectiveness reached 26 dB at 16.7 GHz frequency for NBR/20 phr MWCNT composite with 1.0 mm thickness. POLYM. COMPOS., 2012. © 2012 Society of Plastics Engineers  相似文献   

7.
Lightweight and flexible composite coatings of p‐toluene sulfonic acid doped polyaniline (PANI–TSA) with various mass fractions and polyacrylate were prepared for electromagnetic interference (EMI) shielding. Both the volume and surface conductivities of the composite coatings increased with increasing PANI–TSA; furthermore, the volume conductivity showed a typical percolation behavior with a percolation threshold at about 0.21. The EMI shielding effectiveness (SE) of the PANI–TSA/polyacrylate coatings over the range of 14 kHz to 15 GHz increased with increasing PANI–TSA as the direct‐current conductivity did. EMI SE of the coatings at the low frequencies (14 kHz to 1 GHz) was around 30–80 dB, higher than that at the high frequencies (1–15 GHz); this indicated possible commercial application of the coatings for far‐field EMI shielding. The highest EMI SE value was 79 dB at 200 MHz with a coating thickness of 70 ± 5 μm. The moderate SE, light weight, and easy preparation of the coating are advantages for future applications for EMI shielding. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 98: 2149–2156, 2005  相似文献   

8.
An efficient electromagnetic shielding composite based on multiwalled carbon nanotubes (MWCNTs)-filled styrene acrylic emulsion-based polymer has been prepared in a water-based system. The MWCNTs were demonstrated to have an effect on the dielectric constants, which effectively enhance electromagnetic shielding efficiency (SE) of the composites. A low conductivity threshold of 0.23 wt% can be obtained. An EMI SE of ~28 dB was achieved for 20 wt% MWCNTs. The AC conductivity (σ ac) of the composites, deduced from imaginary permittivity, was used to estimate the SE of the composites in X band (8.2–12.4 GHz), showing a good agreement with the measured results.  相似文献   

9.
The polypyrrole-coated multi-walled carbon nanotubes (MWCNTs) were prepared by in situ chemical oxidative polymerization of pyrrole on the surface of MWCNTs for the novel electromagnetic interference (EMI) shielding materials. The oxyfluorination treatment on MWCNTs introduced the hydrophilic functional groups resulting in well distribution and higher interfacial affinity between polypyrrole (PPy) and MWCNTs. The PPy phases formed on MWCNTs were observed by SEM. The thickness of PPy on the surface of MWCNTs decreased as increasing the hydrophilic groups on MWCNTs by the oxyfluorination treatment. The PPy-coated MWCNT composites showed the remarkable increases in permittivity, permeability, and EMI shielding efficiency (SE). The EMI SE of PPy-coated MWCNTs increased up about 28.6 dB mainly based on the absorption mechanism.  相似文献   

10.
The effect of nitric acid mild functionalized multiwalled carbon nanotubes (MWCNTs) on electromagnetic interference (EMI) shielding effectiveness (SE) of epoxy composites was examined. MWCNTs were oxidized by concentrated nitric acid under reflux conditions, with different reaction times. The dispersion of MWCNTs after functionalization was improved due to the presence of oxygen functional groups on the nanotubes surface. Functionalization at 2 h exhibits the highest EMI SE and electrical conductivity of MWCNTs filled epoxy composites. However, EMI shielding performance of MWCNTs filled epoxy composite declined when the functionalization reaction time was prolonged. This was due to extensive damage on the MWCNT structure, as verified by a Raman spectroscope. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42557.  相似文献   

11.
Three types of single-walled carbon nanotube (SWCNT) homogeneous epoxy composites with different SWCNT loadings (0.01-15%) have been evaluated for electromagnetic interference (EMI) shielding effectiveness (SE) in the X-band range (8.2-12.4 GHz). The effect of the SWCNT structure including both the SWCNT aspect ratio and wall integrity, on the EMI SE have been studied and are found to correlate well with the conductivity and percolation results for these composites. The composites show very low conductivity thresholds (e.g. 0.062%). A 20-30 dB EMI SE has been obtained in the X-band range for 15% SWCNT loading, indicating that the composites can be used as effective lightweight EMI shielding materials. Furthermore, their EMI performance to radio frequencies is found to correspond well with their permittivity data.  相似文献   

12.
This article describes the synthesis and characterization of highly conductive polypyrrole (PPy)/multiwalled carbon nanotube (MWCNT) composites prepared by in situ polymerization of pyrrole using 5‐sulfoisophthalic acid monolithium salt [lithio sulfoisophthalic acid (LiSiPA)] as dopant and ferric chloride as oxidant. Several samples were prepared by varying the amounts of MWCNTs ranging from 1 to 5 wt %. Scanning electron microscope and transmission electron microscope images clearly show a thick coating of PPy on surface of MWCNTs. The electrical conductivity of PPy increased with increasing amount of MWCNTs and maximum conductivity observed was 52 S/cm at a loading of 5 wt % of MWCNTs. Pure PPy prepared under similar conditions had a conductivity of 25 S/cm. Electromagnetic interference (EMI) shielding effectiveness (SE) also showed a similar trend and average EMI shielding of ?108 dB (3 mm) was observed for sample having 5 wt % MWCNT in the frequency range of 8.2–12.4 GHz (X‐band). The light weight and absorption dominated total SE of ?93 to ?108 dB of these composites indicate the usefulness of these materials for microwave shielding. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134 , 45370.  相似文献   

13.
Cotton fabrics with multiwalled carbon nanotubes (MWCNTs) dispersed by Nafion, a polyelectrolyte, and sodium dodecyl benzene sulfonate (SDBS), a surfactant, were prepared for electromagnetic interference (EMI) shielding. The fabrics were characterized by scanning electron microscopy and vector network analysis. The fabrics with the Nafion–MWCNT coating possessed a better shielding efficiency (SE) than those with the SDBS–MWCNT coating because of a more uniform dispersion of MWCNTs, which improved the electrical conductivity and EMI shielding properties. The maximum SE value of the fabric reached 11.48 dB, and the specific SE was 39.6 dB cm3/g. The reflectivity and absorptivity were calculated separately to determine the main mechanism of EMI shielding. The absorptivity was 68.6% at 12 GHz for the Nafion–MWCNT‐coated fabric; this showed that the dominant mechanism of EMI shielding for the treated fabrics was absorption. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40588.  相似文献   

14.
《Ceramics International》2017,43(18):16736-16743
The evaluation and optimization of EMW absorbing properties have been widely studied, but little research focused on EMI shielding properties predicted by complex permittivity. Based on the transmission-line theory, shielding effectiveness (SE) of a dielectric composite was evaluated by the reflection coefficient (Г) and transmission coefficient (T) which were calculated by the complex permittivity. SiCf/SiCN composites containing different content of CVI SiCN matrix are attractive for their tunable dielectric properties, which may vary from EMW absorption to EMI shielding. Therefore, SiCf/SiCN composites are typical dielectric composites used for experimental verification, and the results indicate that the dielectric composites without CVI SiCN phase have good EMW absorbing properties, while they exhibit good EMI shielding effectiveness with CVI SiCN phase. This work builds a relationship between the EMI shielding effectiveness and the complex permittivity, and obtains the optimized complex permittivity for excellent EMI shielding effectiveness.  相似文献   

15.
In this report, multiwalled carbon nanotubes (CNT) embedded poly(styrene-b-(ethylene-co-butylene)-b-styrene) (SEBS) microspheres (CNT/SEBS) were prepared by solvent evaporation method. Reduced graphene oxide (rGO) nanosheets were used to cover the surface of CNT/SEBS microspheres. The CNT/SEBS/rGO nanocomposites with special segregated conductive network were fabricated by hot pressing these as-prepared complex microspheres. The morphology, electrical percolation threshold, electrical conductivity, and electromagnetic interference (EMI) shielding effectiveness (SE) of CNT/SEBS/rGO composites were characterized. The shielding mechanisms were discussed in detail. Analysis of electrical conductive performance shows that the electrical percolation threshold of rGO is 0.22 vol %. Results of EMI shielding test confirmed the synergistic effect between CNT and rGO. The EMI SE of the composite filled by 2.1 vol % CNT and 3.35 vol % rGO can achieve 26 dB in 8.2− 12.4 GHz (X band), which exceeds the basic requirement for commercial application (20 dB). Its reflectance coefficient (19–41%) indicates that the most part of incident electromagnetic (EM) wave energy is attenuated through absorption mechanism. This kind of absorptive EMI shielding material can be applied without serious secondary EM radiation pollution problems. The effects of filler content, molding temperature on EMI SE, and shielding mechanism were also investigated. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2020 , 137, 48542.  相似文献   

16.
Electromagnetic interference (EMI) is an increasingly severe issue in modern life and high-performance EMI shielding materials are in desperate need. To achieve high EMI shielding effectiveness (EMI SE), a series of polybenzoxazine/graphene composites foams are developed using a simple sol–gel method. When the graphene loading increases from 1 to 20 wt%, the density of the composites foams drops from 0.4143 g/cm3 to 0.1654 g/cm3. Meanwhile, an electrically conductive path is formed at around 7 wt% of graphene. Below the percolation threshold, the dielectric constant increases with graphene content and composite foam with 5 wt% graphene shows dielectric constant of 10.8 (1 MHz). At the highest graphene content of 20 wt%, the electric conductivity reaches 0.02 S/cm, 10 orders of magnitude higher than pure polybenzoxazine foam. Benefiting from the high electrical conductivity and lightweight porous structure, the composite foam PF/20G delivers an EMI SE of 85 dB and a specific SE of 513.9 dB·cm3/g. Importantly, the EMI shielding is dominated by absorption attenuation, with PF/20G shows absorption ratio higher than 98% in the range of 8.4–11.0 GHz, which is believed to be caused by multiple internal reflection and absorption inside the conductive foam.  相似文献   

17.
To shield undesirable electromagnetic waves caused by electronic devices and simultaneously resolve the flame safety of the electronic components, an electromagnetic interference (EMI) shielding material with excellent flame‐retardant properties is urgently needed. The synergistic effect of the intumescent flame retardant (IFR) and multiwalled carbon nanotubes (MWCNTs) for polystyrene (PS) nanocomposites prepared by melt blending was investigated. The results show that addition of certain amounts of IFRs facilitated the dispersion of MWCNTs in the PS matrix, and the percolation threshold of the MWCNTs in the PS matrix also decreased from 1.67 ± 0.05 to 1.29 ± 0.04 wt %. Moreover, the EMI shielding efficiencies (SEs) of the PS–MWCNT–IFR composites were consistently higher than those of the PS–MWCNT composites without the addition of the IFRs at the same MWCNT content; this indicated that the synergistic effect of the MWCNTs and IFRs effectively improved the EMI SE of the PS–MWCNT–IFR composites. Furthermore, the limiting oxygen index (LOI) testing results show that the LOI values of the PS–MWCNT composites were consistently higher than 27%; this indicated that the PS–MWCNT composites effectively met the needs of flame safety; this indicated that the PS–MWCNT–IFR composite is a novel and promising candidate for an ideal EMI shielding material with excellent flame‐retardant properties for today's electronic devices. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 45088.  相似文献   

18.
The effect of carbon fiber (CF) modification with multiwall carbon nanotube (CNT) on the electrical, mechanical, and rheological properties of the polycarbonate (PC)/CF/CNT composite was investigated. The CF and multiwall CNT (MWCNT) were treated with sulfuric acid and nitric acid (3:1 wt %) mixture, to modify the CF with the CNT. For the PC with acid-treated CNT (a-CNT) modified acid-treated CF (a-CF) (PC/a-CF/a-CNT) composite, the electrical conductivity, and the electromagnetic interference shielding effectiveness (EMI SE) showed the highest values, compared with those of the PC/a-CF and PC/a-CF/CNT composites. The EMI SE of the PC/a-CF (10 wt %)/a-CNT (0.5 wt %) composite was found to be 26 (dB at the frequency of 10.0 GHz, and the EMI SE was increased by 91.2%, compared to that of the PC/a-CF composite at the same amount of total filler content. Among the composites studied in this work, the PC/a-CF/a-CNT composite also showed the highest values of relative permittivity (εr) and dielectric loss factor. The above results suggest that the CF modification with the a-CNT significantly affected the electrical conductivity and EMI SE of the composite, and the hybrid fillers of the a-CNT and a-CF resulted in good electrical pathways in the PC/a-CF/a-CNT composite. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 47302.  相似文献   

19.
《Ceramics International》2022,48(2):1690-1698
Considering the promising efficiency of composites, in the current study, a graphene oxide (GO)-magnetite-Prussian blue (PB) composite material was prepared. The composite exhibited electrical conductivity, magnetic permeability, and permittivity nature, and was evaluated using electromagnetic interference (EMI) shielding studies. GO was developed by the Hummer's method, ferrite (Fe3O4) was incorporated by the sol-gel method, and PB was introduced in the mixture by an in-situ process. The fabricated samples were studied by X-ray diffraction, Raman Spectroscopy, Fourier-transform infrared spectroscopy along with EMI shielding efficiency (SE) evaluation. The SE of ?71.66 dB of reflection losses was measured at a frequency of 1.5 MHz. The GO/Fe3O4/PB composite provided the best results for the detection in the 1–18 MHz frequency range because of its excellent electric and magnetic properties. The obtained results demonstrated that the GO/Fe3O4/PB composite has promising potential applications in EMI shielding.  相似文献   

20.
This study has reported the preparation of polycarbonate (PC)/graphene nanoplate (GNP)/multiwall carbon nanotube (MWCNT) hybrid composite by simple melt mixing method of PC with GNP and MWCNT at 330°C above the processing temperature of the PC (processing temperature is 280°C) followed by compression molding. Through optimizing the ratio of (GNP/MWCNT) in the composites, high electromagnetic interference shielding effectiveness (EMI SE) value (∼21.6 dB) was achieved at low (4 wt%) loading of (GNP/MWCNT) and electrical conductivity of ≈6.84 × 10−5 S.cm−1 was achieved at 0.3 wt% (GNP/MWCNT) loading with low percolation threshold (≈0.072 wt%). The high temperature melt mixing of PC with nanofillers lowers the melt viscosity of the PC that has helped for better dispersion of the GNPs and MWCNTs in the PC matrix and plays a key factor for achieving high EMI shielding value and high electrical conductivity with low percolation threshold than ever reported in PC/MWCNT or PC/graphene composites. With this method, the formation of continuous conducting interconnected GNP‐CNT‐GNP or CNT‐GNP‐CNT network structure in the matrix polymer and strong π–π interaction between the electron rich phenyl rings and oxygen atom of PC chain, GNP, and MWCNT could be possible throughout the composites. POLYM. COMPOS., 37:2058–2069, 2016. © 2015 Society of Plastics Engineers  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号