首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The copolymerization of styrene (St) and maleic anhydride (MA) was carried out in supercritical carbon dioxide (SC CO2). It was found that St and MA are easy to copolymerize in SC CO2 and the conversion can reach 97%, and that very fine and dry powders are obtained. The products were characterized using Fourier transform infrared spectroscopy (FTIR), gel permeation chromatography (GPC), scanning electron microscopy (SEM), differential scanning calorimetry (DSC), and thermogravimetric analysis (TGA). GPC data showed that the molecular weight of the copolymer reach 3.62 × 104 g mol?1. Scanning electron microphotographs showed the minimum particle size of the product is about 200 nm. DSC measurements indicated that the glass transition temperature (Tg) of the copolymer increases with increasing the MA content in the copolymer. TGA curve showed that the copolymers were decomposed at about 350°C. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2007  相似文献   

2.
In this work, two monomers, acrylamide (AM) and [2‐(methacryloyloxy)ethyl]trimethylammonium chloride (DMC) were copolymerized from kraft lignin (KL) in an aqueous suspension initiated by free radical copolymerization in the presence of potassium persulfate. The impact of copolymerization conditions on the charge density and molecular weight of the copolymers was investigated. The molecular weight and mass balance analyses confirmed that the homopolymer [polyDMC (PDMC) and polyAM (PAM)] and undesired copolymer (AM–DMC) productions dominated as time, initiator, and DMC dosage increased more than the optimum values. The activation energy of the polymerization of KL and AM (43.02 kJ mol?1), KL and DMC (21.99 kJ mol?1), AM (14.54 kJ mol?1), DMC (10.34 kJ mol?1), and AM and DMC (18.13 kJ mol?1) was determined. Proton nuclear magnetic resonance, Fourier transform infrared spectroscopy, thermogravimetric analysis, and elemental analysis confirmed the production of KL–AM–DMC copolymer. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46338.  相似文献   

3.
N‐cyclohexylmaleimide (ChMI) and styrene (St) were polymerized with methyl methacrylate (MMA) at different St feed content by suspension polymerization method. The glass transition temperatures (Tg) of the terpolymers were detected by torsional braid analysis (TBA). Two transition peaks in TBA curves of the terpolymers with a high St content illustrated that these terpolymers have a heterogeneous chain structure and the phase separation occurred. The lower transition temperature, Tg1, was assigned to the random St‐MMA components, and the higher transition temperature, Tg2, was assigned to the St‐ChMI units‐rich segments. Thermogravimetric analyses (TGA) revealed that all the terpolymers showed a two‐step degradation process. The tensile strength of the terpolymers decrease with increasing St content while the impact strength tended to increase slightly. The rheological behavior of the terpolymers was also detected. The result illustrated that the terpolymers showed rheological behavior similar to that of pseudoplastic liquid. The apparent shear viscosity decreased with the increasing of St content. All terpolymers have a higher value of flow n than the poly(MMA‐co‐ChMI). © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 918–922, 2006  相似文献   

4.
Copolymerization of styrene (St) and butadiene (Bd) with CpTiCl3/methylaluminoxane (MAO) catalyst in the presence or absence of chloranil (CA) was investigated. The CpTiCl3/MAO catalyst showed a high activity for the copolymerization of St with Bd. The 1,4‐cis contents in the Bd units for the copolymerization of St and Bd with the CpTiCl3/MAO catalyst was observed, and the 1,4‐cis content was optimum at a MAO/Ti mole ratio of around 225. The effect of the polymerization temperature on the copolymerization was noted, as was the effect of the 1,4‐cis microstructure in the Bd units for the copolymerization of St and Bd. The addition of CA to the CpTiCl3/MAO catalyst was found to influence the molecular weight of the copolymer. The high weight‐average molecular weight copolymer (Mw = ca. 50 × 104) consisting of mainly a 1,4‐cis microstructure of Bd units (1,4‐cis = 80.0%) was obtained from the copolymerization with the CpTiCl3/MAO catalyst in the presence of CA (CA/Ti mole ratio = 1) at 0°C. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 88: 2942–2946, 2003  相似文献   

5.
The radical copolymerization of styrene with acrylonitrile in dioxan at 60±0.1°C for 1 h. in the presence of triphenyl-bismuthonium 1,2,3,4-tetraphenylcyclopentadienylide follows ideal kinetics, with bimolecular termination and results in the formation of alternating copolymer as evidenced from the values of the reactivity ratios as r1 (Sty) = 0.266 and r2 (AN) = 0.054. The overall energy of activation is computed to be 21 kJ mol?1. The FTIR spectrum of the copolymer shows the presence of bands at 3054 cm?1 assigned to the phenyl group of styrene and at 2238 cm?1 assigned to the cyanide group of AN. The 1H-NMR spectrum of the copolymer shows peaks between 7.25 and 7.71δ assigned to the phenyl protons of styrene. The nitrogen percent for AN was evaluated by elemental analysis.  相似文献   

6.
The present study focuses on the terpolymer of styrene (St), isoprene (Ip), and butadiene (Bd) synthesized together in cyclohexane at 70°C with neodymium (Nd) compound, alkylaluminum, and chlorinating agent (Cl) rare earth cocatalyst system. The resultants possessed atactic St–St sequences and high cis‐1,4 polyconjugated olefins in macromolecular chains besides controllable composition. The composition of the St–Ip–Bd terpolymers and molecular weight (Mw), molecular weight distribution (Mw/Mn) were controlled through the adjustment of Nd compound, alkylalumium, monomers feed ratio (St/Ip/Bd), and [Nd]/[monomers]. With the inventory rating of St raised from 15% to 55%, the content of St in the terpolymers got increased from 2% to 15%. And the content of the Ip segments and Bd segments in the terpolymers increased from 33% to 56% and from 28% to 54%, respectively, with the proportion of Ip/Bd varied from 1/2 to 2/1. As the [Nd]/[monomers] varied from 1.0 × 10?3 to 5.0 × 10?4, the molecular weight increased from 1.3 × 104 to 2.7 × 104. According to the proton nuclear magnetic resonance (1H‐NMR) and 13C‐NMR, it was proved that both microstructures of polybutadiene segments and polyisoprene segments were high cis‐1,4‐configuration. A single glass‐transition temperature was observed in the differential scanning calorimetry curve. POLYM. ENG. SCI., 54:1858–1863, 2014. © 2013 Society of Plastics Engineers  相似文献   

7.
In this contribution, random copolymers of p(styrene‐co‐acrylonitrile) via initiators for continuous activator regeneration (ICAR) in atom transfer radical polymerization (ATRP) (ICAR ATRP) of styrene and acrylonitrile (SAN) were synthesized at 90°C in low molecular weight polyethylene glycol (PEG‐400) using CCl4 as initiator, FeCl3·6H2O as catalyst, succinic acid as ligand and thermal radical initiator azobisisobutyronitrile (AIBN) as thermal free radical initiator. In this system, well‐defined copolymer of SAN was achieved. The kinetics results showed that the copolymerization rate obeyed first‐order kinetics model with respect to the monomer concentration, and a linear increase of the molecular weights with the increasing of monomer conversion with narrow molecular weight distribution was observed in the range of 1.1–1.5. The conversion decreased with increasing the amount of FeCl3·6H2O and increased with increasing the molar ratio of [St]0/[AN]0/[CCl4]0 and temperature. AIBN has a profound effect on the polymerization. The activation energy was 55.67 kJ mol?1. The living character of copolymerization was confirmed by chain extension experiment. The resultant random copolymer was characterized by 1H‐NMR and GPC. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40135.  相似文献   

8.
Synthesis of a series of novel terpolymers, consisting of two electron-donating monomers, viz. N-vinyl pyrrolidone (N-VP) (heterocyclic polar monomer) and styrene (Sty) (non-polar monomer), with one electron-accepting polar monomer, i.e. acrylonitrile (AN), using α,α'-azobisisobutyronitrile as radical initiator and benzene as diluent at 60°C, has been extensively surveyed. Besides the synthesis, an attempt has been made to study the kinetics and various properties of the terpolymers, such as softening temperature and chemical resistance. The system follows non-ideal kinetics and the kinetic equation for the present system can be written as This non-ideality can be explained on the basis of significant initiator-dependent termination through primary radicals and degradative chain transfer to acrylonitrile monomer. The overall energy of activation is 72.4 kJ mol?1 and kp2/kt is 0.26 × 10?3 litre mol?1 s?1. The effects of various additives such as imidazolium-p-chlorophenacylide (ICPY) and ZnCl2 were also studied. ICPY functions as a chain transfer agent (Ctr = 0.43 × 10?4), whereas ZnCl2 accelerates the rate of reaction. IR spectroscopy was used to confirm the structure of the terpolymers.  相似文献   

9.
耿同谋  吴文辉 《精细化工》2005,22(9):671-674
研究了胶束共聚法制备的孪尾疏水缔合水溶性聚合物P(AM/NaAA/D iC8AM)的水溶液的黏度行为。当疏水单元摩尔分数为0.05%~0.40%时,P(AM/NaAA/D iC8AM)在30℃、c(NaC l)=1.000 mol/L水溶液中的特性黏数[η]为2 149~367 mL/g、Huggins常数KH为0.220~3.90;随疏水单元摩尔分数增加,特性黏数[η]减少、KH增加。在矿化度为19 334μg/g的盐水溶液中,P(AM/NaAA/D iC8AM)的表观黏度随疏水单元摩尔分数的增加而增加、随剪切速率的增加而降低。随疏水单元摩尔分数的增加,临界缔合质量浓度降低;与后加的SDS[ρ(SDS)=0~6.0 g/mL]的疏水缔合作用增强,黏度增加的幅度增大。表观黏度随温度的变化也与疏水单元摩尔分数有关,当x(H)=0.3%、温度升至45℃左右时,出现最大值。在NaC l、CaC l2的离子强度分别为1.26×10-3~4.88×10-3mol/kg、1.07×10-4~5.28×10-4mol/kg的水溶液中,出现盐增黏现象。  相似文献   

10.
A novel free radical interfacial copolymerization was proposed and used to prepare the amphiphilic block copolymer of acrylamide (AM) with styrene (S). In this copolymerization, a synthesized new kind of initiator, namely, amphiphilic bifunctional initiator, which has not only a hydrophilic and a hydrophobic group but also two functional groups generating radicals in both ends of its molecule, was used to initiate the interfacial copolymerization. The generated amphiphilic block copolymer was characterized by infrared analysis, differential scanning calorimetry, elemental analysis, and dissolution behavior. The migration of generated copolymer from interface to water phase was discussed. © 1998 John Wiley & Sons, Inc. J Appl Polym Sci 69: 443–449, 1998  相似文献   

11.
Copolymerizations of butadiene (Bd) with styrene (St) were carried out with catalytic systems composed of a rare‐earth compound, Mg(n‐Bu)2 (di‐n‐butyl magnesium) and halohydrocarbon. Of all the rare earth catalysts examined, Nd(P507)3–Mg(n‐Bu)2–CHCl3 showed a high activity in the copolymerization under certain conditions: [Bd] = [St] = 1.8 mol l?1, [Nd] = 6.0 × 10?3 mol l?1, Mg/Nd = 10, Cl/Nd = 10 (molar ratio), ageing for 2 h, copolymerization at 50 °C for 6–20 h. The copolymer of butadiene and styrene obtained has a relatively high styrene content (10–30 mol%), cis‐1,4 content in butadiene unit (85–90%), and molecular weight ([η] = 0.8–1 dL g?1). Monomer reactivity ratios were estimated to be rBd = 36 and rSt = 0.36 in the copolymerization. © 2002 Society of Chemical Industry  相似文献   

12.
Radical copolymerization of acrylonitrile (AN) with styrene (Sty), using x,x′-azobisisobutyronitrile as initiator, was carried out in the presence of zinc chloride (ZnCl2) dilatometrically at 65/pm 0.1 C for 120min. The rate of polymerization was a direct function of the concentrations of ZnCl2, AN and Sty, and polymerization temperature. The viscosity-average molecular weight of the copolymer increased with ZnCl2 concentration. The energy of activation in the presence and absence of the complex was evaluated as 82.5 kJ mol?1 and 115.5 kJ mol?1, respectively. The copolymerization of AN with Sty proceeded via the radical-complex mechanism.  相似文献   

13.
The terpolymers (PASA) with acrylamide (AM), butyl styrene (BST), and sodium 2‐acrylamido‐2‐methylpropane sulfonate (NaAMPS) were synthesized by the micellar free radical copolymerization technique. The polymer composition was determined by the elemental analysis, and the block structure of PASA was characterized directly by DSC measurement. Incorporation of NaAMPS into the terpolymers may improve the water solubility and intermolecular association, and the feed amount of BST, sodium dodecyl sulfate (SDS) amount, and the total monomer concentration in the polymerization can influence apparently the viscosities of PASA. The polymer exhibits excellent viscosification effect, salt‐thickening, temperature‐thickening, thixotropy, pseudoplastic behavior or shear‐thickening relative to the BST content in PASA, excellent antiaging property at 85°C, and a dramatic increase in solution viscosity by the addition of little amount of SDS. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 103: 4027–4038, 2007  相似文献   

14.
A modular β‐cyclodextrin copolymer for clay stabilization was prepared from 2‐O‐(allyloxy‐2‐hydroxyl‐propyl)‐β‐cyclodextrin (XBH), acrylamide (AM), 2‐acrylamido‐2‐methyl propane sulfonic acid (AMPS), and sodium acrylate (NaAA) via redox free‐radical copolymerization. The effects of reactive conditions (such as initiator concentration, monomer ratio, reaction temperature, and pH) on the apparent viscosity of the copolymer were investigated and the optimal conditions for the copolymerization were established. The copolymer obtained was characterized by infrared spectroscopy, scanning electron microscope, viscosity measurements, rheological measurement, core stress test, and X‐ray diffractometry. The crystalline interspace of MMT could be reduced from 18.95323 Å to 15.21484 Å by copolymer AM/NaAA/AMPS/XBH. And this water‐soluble copolymer also showed remarkable anti‐shear ability, temperature resistance, and salt tolerance (1000 s?1, viscosity retention rate: 35%; 120°C, viscosity retention rate: 75%; 10,000 mg/L NaCl, viscosity retention rate: 50.2%; 2000 mg/L CaCl2, viscosity retention rate: 48.5%; 2000 mg/L MgCl2, viscosity retention rate: 42.9%). © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

15.
以过硫酸钾为引发剂,在微乳液中合成了具有旋光性的N-马来酰基-L-丙氨酸(AMI)与苯乙烯(St)的共聚物。用元素分析法测定了共聚物内氮摩尔分数,从而确定了共聚物摩尔组成与单体配比之间的关系,进而计算出AMI与St的竞聚率分别是0.05,0.10,并计算出相应的AMI单体活性值为1.59、AMI单体极性值为1.50,讨论了共聚物旋光性的成因以及旋光性共聚物的结构。结果表明,该共聚物具有交替共聚合的倾向。  相似文献   

16.
Homogeneous copolymerization of styrene and 1‐hexene was carried out in toluene at room temperature using bisindenyl ethane zirconium dichloride/methylaluminoxane (MAO). The supported catalyst was prepared with immobilization of Et(Ind)2ZrCl2/MAO on silica (calcinated at 500°C) with premixed method. Heterogeneous copolymerization of styrene/1‐hexene with different mole ratios was carried out in the presence of supported catalyst system. The copolymers obtained from homogeneous and heterogeneous catalyst system were characterized by 1H NMR and 13C NMR. Composition of the resulting copolymers was determined by 1H NMR data. Analysis of 13C NMR spectra of obtained copolymers by homogeneous and heterogeneous catalyst systems present isotactic olefin‐enriched copolymers. Molecular weight and thermal behavior of resulting copolymers was investigated. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 104: 4008–4014, 2007  相似文献   

17.
Alternating copolymers, containing styrene and citronellol sequences, have been synthesized by radical polymerization using benzoylperoxide (BPO)–p‐acetylbenzylidenetriphenyl arsoniumylide (pABTAY) as initiator, in xylene at 80 ± 1 °C for 3 h under inert atmosphere. The kinetic expression is Rp ∝ [BPO]0.88 [citronellol]0.68 [styrene]0.56 with BPO and Rp ∝ [pABTAY]0.27 [citronellol]0.76 [styrene]0.63 with pABTAY, ie the system follows non‐ideal kinetics in both cases, because of primary radical termination and degradative chain transfer reactions. The activation energy with BPO and pABTAY is 94 kJ mol?1 and 134 kJ mol?1, respectively. Different spectral techniques, such as IR, FTIR, 1H NMR and 13C NMR, have been used to characterize the copolymer, demonstrating the presence of alcoholic and phenyl groups of citronellol and styrene. The alternating nature of the copolymer is shown by the product of reactivity ratios r1 (Sty) = 0.81 and r2 (Citro) = 0.015 using BPO and r1 (Sty) = 0.37 and r2 (Citro) = 0.01 using (pABTAY), which are calculated by the Finemann–Ross method. A mechanism of copolymerization is proposed. © 2001 Society of Chemical Industry  相似文献   

18.
Terpolymers of methyl methacrylate (MMA), N‐phenylmaleimide (PMI) and styrene (St) were synthesized by emulsion copolymerization. The thermal stabilities of terpolymers were studied by a programmed thermogravimetric analysis (TGA) technique. Terpolymers show a considerable increase in decomposition temperature with increasing feed content of PMI and St. The glass transition temperatures (Tg) of copolyniers were measured by differential scanning calorimetry (DSC) and torsional braid analysis (TBA). The terpolymer's Tg increases markedly with the increasing PMI feed content, while it decreases with increasing St feed content. The rheological behaviors of copolymers were also studied. The terpolymer's apparent viscosity in melt decreases with increasing feed contents of PMI and St. The terpolymer's flow index n increases with the increasing feed content of PMI. The results also show that the difference value between TgDSC and TgTBA ' ΔTg increases with an increase in the terpolymer's flow index. M?w and M?n of copolymers were also determined by gel permeation chromatography (GPC).  相似文献   

19.
Thermal and optical properties of copolymers of 1‐adamantyl methacrylate (AdMA) and styrene (St) prepared by free radical polymerization in the bulk are investigated. The copolymer forms an azeotrope when the composition is AdMA/St = 55/45 mol%. The glass transition temperature and decomposition temperature of the azeotropic copolymer are 170 and ca 340 °C, respectively. The refractive index increases nonlinearly with St content from 1.522 to 1.591. The light scattering loss at 633 nm is 28.1 dB km?1, which is less than half of that of polystyrene. The total optical loss including molecular vibrational absorption, which is evaluated using a copolymer‐based optical fiber, is 292–645 dB km?1 at 500–700 nm. These values correspond to transmittances of 86–93% for a 1 m optical path length. © 2014 Society of Chemical Industry  相似文献   

20.
In this study, rigid thermoset polymers were prepared from radical copolymerization of linseed oil monoglyceride maleates with styrene (St). First, linseed oil monoglycerides (LOMGs) were obtained from the reaction of linseed oil with glycerol at 220–240°C. Then, LOMGs were reacted with maleic anhydride at 80°C to produce the LOMG maleate half esters. The reactions were followed by FTIR spectroscopy and size exclusion chromatography (SEC) and the final resin was characterized by 1H‐NMR spectroscopy. Finally, radical copolymerization of the LOMG maleates with 20, 40, 60, and 80% by weight of St was performed to produce rigid, thermoset polymers. The thermomechanical properties and fracture behavior of the cured copolymers, as a function of the percentage of St, were measured and analyzed. The copolymer with 40% by weight of St was the material with better mechanical and fracture behavior. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 97: 825–836, 2005  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号