首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Water and nutrients are two important inputs to agriculture that need to be used judiciously with higher efficiency to save these limited resources. For these purposes, a series of nanoclay–polymer composite (NCPC) superabsorbent nutrient carriers were prepared. These NCPCs were based on the reactions of different types of nanoclays (10 wt %) with partially neutralized acrylic acid and acryl amide by a free‐radical aqueous solution copolymerization reaction with N,N′‐methylene bisacrylamide as a crosslinker and ammonium persulfate as an initiator. The nanoclays isolated from three different types of soils were dominant in kaolinite (clay I ), mica (clay II ), and montmorillonite (clay III ), and a portion of each was freed from amorphous aluminosilicate. Thus, there were six different types of nanoclays used, namely, those dominated by kaolinite, mica, and smectite with and without amorphous aluminosilicate. Fourier transform infrared spectroscopy and X‐ray diffraction (XRD) investigations showed evidence of interaction between the clays and polymer. XRD investigation also showed that the reaction between the polymer and clays I and II occurred on the surface of various clay particles without intercalating into the stacked silicate galleries, whereas in the case of clay III (the smectite‐dominated clay), evidence indicated the intercalation of polymer into the stacked silicate galleries of the clay and the exfoliation of the clay. The water absorbency decreased in the NCPCs compared to that of the pure polymeric hydrogel. In case of the pure polymer, the entire amount of nutrient loading released within 15 h of incubation; this was higher than that of the NCPCs. In the initial stage (up to 15 h), no significant differences in nutrient release were observed among the different polymer/clay composites, but there were differences in later stages. Among the different NCPCs, the percentage release of nutrients at 48 h ranged from around 70% in the polymer/clay III composite to 90% in the polymer/clay I composite. The presence of amorphous aluminosilicates in clay did not make any difference in the nutrient‐release rate. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2014 , 131, 39951.  相似文献   

2.
Second and fourth generations of hydroxylated dendritic polyesters based on 2,2-bis-methylopropionic acid (bis-MPA) with an ethoxylated pentaerytriol (PP50) core were combined with unmodified sodium montmorillonite clay (Na+MMT) in water to generate a broad range of polymer clay nanocomposite films from 0 to 100% wt/wt. X-ray diffraction (XRD) and transmission electron microscopy (TEM) were used to investigate intercalation states of the clay galleries. Intercalation was the dominant state in these nanocomposites. Significant exfoliation was only observed within 0–5% wt/wt of mineral composition range. It was shown that interlayer spacing changed within the composition range 5–95% wt/wt from 0.5 nm to up to 3.5 nm in a step-like fashion with 0.5 nm increments which corresponded to a flattened conformation of confined hyperbranched polymers (HBP). Second and fourth generations exhibited the same layer-by-layer intercalation of completely flattened HBPs. No dependence of interlayer spacings on generation number was found. XRD and TEM revealed the presence of mixed intercalated populations with interlayer spacings at multiples of 0.5 nm.  相似文献   

3.
Poly(methyl methacrylate)/clay nanocomposites were synthesized via in situ free radical polymerization of methyl methacrylate (MMA) in the presence of functionalized clay. Montmoril-lonite (MMT), a smectic type of clay, was treated with a commercial cationic surfactant, benzalkonium chloride (BAC), and a synthesized zwitterionic surfactant, octadecyldimethyl betaine (CI8DMB) Functionalized MMT was prepared via an ion exchange between Na,ions in the clay and the surfactant cations in aqueous medium. The intercalation of the surfactant in the clay galleries was determined using X-ray diffraction (XRD). The interlayer spacing for C18DMB was 2.03nm, higher than 1.86nm observed for BAC. This is due to longer chain length of C18DMB. Both organophilic clays formed a viscous gel when dispersed in the monomer, MMA. Poly(methyl methacrylate) (PMMA) nanocomposites were obtained by polymerizing the dispersions. XRD and transmission electron microscopy (TEM) indicate predominant exfoliation of the silicate layers in the polymer matrix for MMT treated with C18DMB, and partial exfoliation for MMT treated with BAC  相似文献   

4.
In the present work, thermoplastic elastomer (TPE)–clay nanocomposites (TPN) based on different rubber–plastic blends from ethylene–octene copolymer [Engage]–Polypropylene and brominated poly(isobutylene‐co‐paramethyl styrene)–nylon 6 were prepared by melt blending. Hexadecyltrimethylammonium bromide and octadecyl amine‐modified sodium montmorillonite were used as organoclays. The nanocomposites were prepared by adding the nanoclay separately into the rubber and plastic phases. The TPNs were characterized with the help of transmission electron microscopy (TEM) and X‐ray diffraction. The X‐ray diffraction peaks observed in the range of 3–10° for the modified clays disappeared in the thermoplastic elastomeric nanocomposites. TEM photographs showed exfoliation and intercalation of the clays in the range of 20–30 nm in the particular phase where the clay was added. Excellent improvement in mechanical properties like tensile strength, elongation at break, and modulus was observed on incorporation of the nanoclays in the rubber phase of TPN. When the nanoclay was added to the plastic phase, the mechanical reinforcement is comparatively poorer due to partial destruction of the crystallinity. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 99: 1645–1656, 2006  相似文献   

5.
Poly(ethylene glycol)–montmorillonite nanocomposites were prepared by both solution and melt intercalation methods with a range of polymer molecular weights and at a range of polymer loadings. Particular attention was given to the reliability of low‐angle X‐ray diffraction results for basal plane spacing and a sound correlation between three diffractometers was obtained (±0.005 nm). Expansion of the basal plane spacing from 1.23 nm to 1.82 nm by solution intercalation was independent of polymer molecular weight in the range 300–20 000. Furthermore, the clay expansion was independent of the method of intercalation; melt intercalation also gave d001 = 1.82 nm irrespective of polymer molecular weight. The maximum amount of polymer intercalated by clay and the maximum loading of clay that polymer can sustain were also studied for the determination of nanocomposite formulations. The confined polymer exerts a reduced effective density (670 kg m?3) in the galleries. Copyright © 2005 Society of Chemical Industry  相似文献   

6.
Melt intercalation of clay with poly(ethylene terephthalate; PET) was investigated in terms of PET chain mobilities, natures of clay modifiers, their affinities with PET, and nanocomposite solid state polymerization (SSP). Twin screw extrusion was used to melt blend PET resins with intrinsic viscosities of 0.48, 0.63, and 0.74 dL/g with organically modified Cloisite 10A, 15A, and 30B montmorillonite clays. Clay addition caused significant molecular weight reductions in the extruded PET nanocomposites. Rates of SSP decreased and crystallization rates increased in the presence of clay particles. Cloisite 15A blends showed no basal spacing changes, whereas the basal spacings of Cloisite 10A and Cloisite 30B nanocomposites increased after melt extrusion, indicating the presence of intercalated nanostructures. After SSP these nanocomposites also exhibited new lower angle X‐ray diffraction peaks, indicating further expansion of their basal spacings. Greatest changes were seen for nanocomposites prepared from the lowest molecular weight PET and Cloisite 30B, indicating its greater affinity with PET and that shorter more mobile PET chains were better able to enter its galleries and increase basal spacing. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

7.
Rubber‐based nanocomposites were prepared with octadecyl amine modified sodium montmorillonite clay and styrene–butadiene rubber with different styrene contents (15, 23, and 40%). The solvent used to prepare the nanocomposites, the cure conditions, and the cure system were also varied to determine their effect on the properties of the nanocomposites. All the composites were characterized with X‐ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, and transmission electron microscopy (TEM). The XRD studies revealed exfoliation for the modified clay–rubber composites. The TEM photomicrographs showed a uniform distribution of the modified clay in the rubber matrix. The thickness of the particles in the exfoliated composites was around 10–15 nm. Although the FTIR study of the unmodified and modified clays showed extra peaks due to the intercalation of the amine chains into the gallery, the spectra for the rubber–clay nanocomposites were almost the same because of the presence of a very small amount of clay in the rubber matrix. All the modified clay–rubber nanocomposites displayed improved mechanical strength. The styrene content of the rubber had a pronounced effect on the properties of the nanocomposites. With increasing styrene content, the improvement in the properties was greater. Dicumyl peroxide and sulfur cure systems displayed similar strength, but higher elongation and slightly lower modulus values were obtained with the sulfur cure system. The curing of the samples at four different durations at 160°C showed that the cure time affected the properties. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 92: 698–709, 2004  相似文献   

8.
M. Wang  A.J. Hsieh 《Polymer》2010,51(26):6295-6302
We examine the influence of tethering chemistry of cationic surfactants on exfoliation of montmorillonite (MMT) clay dispersed in methyl methacrylate (MMA) followed by in-situ polymerization to form poly(methyl methacrylate) (PMMA) nanocomposites, the effect of exfoliation and clay loading on the rheology of polymer/clay dispersions in dimethyl formamide, and the diameters of nanocomposite fibers formed from these dispersions by electrospinning. Incorporation of an additional reactive tethering group of methacryl functionality significantly improves the intercalation and exfoliation of clays in both in-situ polymerized PMMA nanocomposites and the corresponding electrospun fibers. The proper surfactant chemistry also increases the dispersion stability, extensional viscosity, extent of strain hardening and thus the electrospinnablity of the nanocomposite dispersions, especially at low nanocomposite concentrations. The degree of the enhancement in electrospinnability by clays with proper tethering chemistry is at least the same as or greater than that obtained with three times higher loading level of clay particles without proper tethering chemistry in the nanocomposites. These results suggest a new strategy to produce smaller diameter fibers from very dilute polymer solutions, which are otherwise not electrospinnable, by incorporating a small amount of well-exfoliated clays.  相似文献   

9.
Nylon 6 nanocomposites were prepared using melt intercalation technique. Sodium montmorillonite (Na-MMT) was modified with octadecyl ammonium salt to evaluate the effect of clay modification on the performance of the nanocomposites. A comparative account with the nanocomposites prepared, using commercial clay cloisite 30B has been presented. X-ray diffraction (XRD) studies indicated an increase in the basal spacing of organically modified clays. Further, X-ray diffractograms of the nanocomposites displayed the absence of basal reflections suggesting the formation of an exfoliated structure. Transmission electron microscopy (TEM) investigations also confirmed exfoliation of clay galleries in the nanocomposites. Differential scanning calorimetry (DSC) measurements revealed both γ and α transitions in the matrix polymer as well as the nanocomposites. The crystallization temperature (Tc) exhibited a marginal increase in the C30B/Nylon 6 nanocomposites. Thermal stability of virgin Nylon 6 and the nanocomposites has been investigated using thermogravimetric analysis. Mechanical test revealed an increase in the tensile and flexural properties of Nylon 6 with the incorporation of nanoclays. Storage and loss modulus of virgin matrix increased with the incorporation of nanoclays. C30B/Nylon 6 nanocomposites exhibited optimum performance at 5% clay loading. Further, water absorption studies also confirmed comparatively lesser tendency of water uptake in these nanocomposites.  相似文献   

10.
Pham Hoai Nam 《Polymer》2005,46(18):7403-7409
The melt intercalation of poly(l-lactide) (PLLA) chains into silicate galleries has been investigated via a melting process without any shearing force at elevated temperature. Under the melting process, the incorporation of various types of organo-modified montmorillonites into PLLA matrix lead to the increase in the basal spacing of clay particles in different manner without delamination into individual layers. The changes in layer-stacked structures of the clay particles in the PLLA matrix were examined by use of wide-angle X-ray diffraction and transmission electron microscopy. The effects of clay content in PLLA matrix and clay surfactants on the melt intercalation of PLLA were discussed in terms of chain mobility.  相似文献   

11.
Ethylene copolymers with different polar comonomers, such as vinyl acetate, methyl acrylate, glycidyl methacrylate, and maleic anhydride, were used for the preparation of polymer/clay nanocomposites by statically annealing their mechanical mixtures with different commercial or home-made organically modified montmorillonites containing only one long alkyl tail. The nanostructure of the products was monitored by X-ray diffraction, and the dispersion of the silicate particles within the polymer matrix was qualitatively evaluated through microscopic analyses. The effect of the preparation conditions on the structure and the morphology of the composites was also addressed through the characterization of selected samples with similar composition prepared by melt compounding. In agreement with the findings reported in a previous paper for the composites filled with two-tailed organoclays, intercalation of the copolymer chains within the tighter galleries of the one-tailed clays occurs easily, independent of the application of a mechanical stress. However, the shear-driven break-up of the intercalated clay particles into smaller platelets (exfoliation) seems more hindered. A collapse of the organoclay interlayer spacing was only observed clearly for a commercial one-tailed organoclay – Cloisite® 30B – whereas the same effect was almost negligible for a home-made organoclay with similar structure.  相似文献   

12.
A novel method of nanoclay exfoliation in the synthesis of nanocomposites of PMR type thermoset resins was investigated. The method involves nanoclay intercalation by lower molecular weight PMR monomer prior to dispersion in primary, higher molecular weight PMR resin and resin curing to obtain the final composites. The resultant mechanical and thermal properties were evaluated as functions of clay type, degree of clay exfoliation, and clay intercalation strategies. It was found that sonication of clay at the time of intercalation by lower molecular weight PMR resin helps to achieve higher degree of exfoliation. In addition, clays obtained from ion exchange with a 50:50 mixture of N-[4(4-aminobenzyl)phenyl]-5-norborene-2,3-dicarboximide (APND), and dodecylamine (C12) showed better exfoliation than Cloisite® 30B clay. The resultant nanocomposites show higher thermal stability and higher tensile modulus.  相似文献   

13.
A continuous ultrasound‐assisted process using a single screw extruder with an ultrasonic attachment was developed to prepare PP/clay nanocomposites of varying clay concentrations. The feed rate that controlled the residence time of the polymer in the ultrasonic treatment zone was varied. Die pressure and power consumption were measured. Rheological properties, morphology, and mechanical properties of the untreated and ultrasonically treated nanocomposites were studied. An intercalation of polymer molecules into clay galleries and a partial exfoliation, which occur at short residence times (of the order of seconds), were observed as evident from measurements by X‐ray diffraction and transmission electron microscopy. The obtained results indicate a possibility of the rapid intercalation and partial exfoliation of PP/clay nanocomposites without the matrix being chemically modified. J. VINYL. ADDIT. TECHNOL. 12:78–82, 2006. © 2006 Society of Plastics Engineers.  相似文献   

14.
Silicate layer exfoliation processes in maleic anhydride (MA) modified polyolefins were studied by using X‐ray diffraction measurements, scanning electron microscopy, and transmission electron microscopy observations. Modified polyolefins grafted with 0.09–4.5 wt % MA groups intercalate into the organophilic clay galleries modified with stearyl ammonium ions. Molten MA‐modified polypropylene continuously intercalates into the galleries and the silicate layers exfoliate spontaneously without shear. However, the silicate layers maintain arranging parallel together, although the interlayer spacing expands over 10 nm. By adding shear, the silicate layers homogeneously disperse into MA‐modified polypropylene matrix. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 93: 464–470, 2004  相似文献   

15.
Cast films of poly(lactic acid) (PLA) and polypropylene (PP) with 2.5 and 5 wt % organo modified nanoclay were prepared and then uniaxially and biaxially hot drawn at T = 90 and 155°C, respectively, using a biaxial stretcher. The orientation of PLA and PP crystal unit cells, alignment of clay platelets, as well as the extent of intercalation and exfoliation were studied using wide angle X‐ray diffraction (WAXD). The measurement of d‐spacing of the 001 plane (normal to platelets plane) of the clay tactoids indicated the intercalation of the silicate layers for the PLA nanocomposite films, whereas the PP nanofilled films showed only dispersion of the nanoparticles (i.e., neither intercalation nor exfoliation were observed). The intercalation level of the clay platelets in PLA was almost identical for the uniaxially and biaxially drawn films. Our finding showed that the crystallite unit cell alignments are appreciably dependent on uniaxial and biaxial stretching. Moreover, the incorporation of clay to some extent influenced the orientation of the crystal unit cell axes (a, b, and c) of the oriented films. The silicate layers revealed a much higher orientation into the flow direction in the uniaxially stretched films compared to the biaxially drawn samples. In addition, the orientation of the 001 plane of nanoclays was significantly greater in the PLA compared to the PP nanoclay composite films probably due to a better intercalation and stress transfer in the former. Morphological pictograms illustrating the effects of uniaxial and biaxial stretching on the clay orientation are proposed. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

16.
The use of a high melt strength polypropylene (HMS PP) matrix reinforced with layered clays could be very useful to improve the properties of materials produced with processes involving melt stretching, like foaming. The control of the particles structure, that is, the degree of exfoliation and the clay distribution in the polymeric matrix, is the key to achieve the desired properties. In this study, the effects of the extrusion process, the clay type and content, and the foaming process on the morphology of different HMS PP based composites are studied. Both, natural and organomodified clays were used. The extrusion process has a negative effect in the composites containing natural clays as their interlayer distance decreases as the number of extrusion cycles increases. On the contrary, this process improves the intercalation of the organomodified clays. However, in both composites the interlayer spacing decreases when the clay content increases. While a percolated network is formed in the composites containing organomodified clays, no network is formed with the natural clays. Finally, the effect of the foaming process has also been analyzed. The Improved Compression Moulding (ICM) route was used to produce the foamed materials. This technique subjects the materials only to a temperature and a pressure gradient without applying any other external forces that could contribute to the clay exfoliation. In this way, only the effects of foaming and melt stretching are observed. In both composites, an increase in the interlayer distance is observed when the materials are foamed. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42828.  相似文献   

17.
In this work sodium montmorillonite (Na-MMT) was functionalized with N-(2-aminoethyl)-3-aminopropyl-trimethoxysilane and the corresponding silylated clay was used to modify epoxy matrix cured with triethylenetetramine. The grafting/intercalation of the aminosilane inside the clay galleries were followed by infrared spectroscopy, X-ray diffraction, thermogravimetric analysis and 29Si cross-polarization magic-angle-spinning nuclear magnetic-resonance (CP/MAS NMR) spectroscopy. Epoxy-based nanocomposites were prepared with different amounts of silylated clay or commercial organoclay, Cloisite 30B, whose intercalating agent consists of a methyl, tallow, bis-2-hydroxyethyl quaternary ammonium salt. The degree of intercalation/exfoliation was estimated by X-ray diffraction experiments and confirmed by small angle X-ray scattering. Nanocomposites prepared with silylated clay displayed no peak in both XRD and SAXS curves whereas those prepared with Cloisite 30B exhibited a clear interference peak corresponding to an interlayer spacing d001 of 4.1 nm. The former also presented a better dispersion, with a high proportion of tactoids smaller than 2 nm, as estimated by SAXS. From the results of dynamic mechanical analysis it was observed that most of the nanocomposites display higher storage modulus mainly at temperatures above the glass transition temperature. The glass transition temperature is similar or higher than the neat epoxy network for nanocomposites containing 1 wt.% of silylated clay or higher.  相似文献   

18.
In this work, preparation and properties of nanoclay modified by organic amine (octadecyl amine, a primary amine) and Engage (ethylene–octene copolymer)–clay nanocomposites are reported. The clay and rubber nanocomposites have been characterized with the help of Fourier transform infrared spectroscopy (FTIR), transmission electron microscopy (TEM), and X‐ray diffraction (XRD). The X‐ray results suggest that the intergallery spacing of pristine clay increases with the incorporation of the amine. The XRD peak observed in the range of 3–10° for the modified clay also disappears in the rubber nanocomposites at low loading. TEM photographs show exfoliation of the clays in the range of 10–30 nm in Engage. In the FTIR spectra of the nanocomposite, there are common peaks for the virgin rubber as well as those for the clay. Excellent improvement in mechanical properties, like tensile strength, elongation at break, and modulus, is observed on incorporation of the nanoclay in Engage. The storage modulus increases, tan δ peak decreases, and the glass transition temperature is shifted to higher temperature. The results could be explained with the help of morphology, dispersion of the nanofiller, and its interaction with the rubber. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 101: 603–610, 2006  相似文献   

19.
Nanocomposites films were designed from soy protein isolates (SPI), clays (Na+‐MMT), and eugenol an antimicrobial agent. Interactions between Na+‐MMT and eugenol were evidenced by a shift of the d‐spacing by X‐ray diffraction analysis. The addition of Na+‐MMT (5 and 7.5% w/w) in SPI solution increased its shear thinning behavior and its consistency. Accordingly, a good exfoliation of clays in SPI films was observed. The glass transition temperature of SPI films was impacted by the clays addition but not the water vapor permeability. In contrast, the addition of eugenol in SPI solution did not affected the consistency but induced a decrease of the SPI film Tg and an increase of the water vapor permeability. The presence of eugenol counterbalanced the effect of clays on consistency of film‐forming solution. The clay intercalation process was facilitated and the water vapor permeability and active agent release were modified. The presence of clay did not affect the antibacterial effect of eugenol/SPI films. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 45941.  相似文献   

20.
The exfoliation of clay layers was realized in a tri‐hydroxyl branched polyether polyol by direct mixing and the corresponding exfoliated polyurethane/clay nanocomposite was prepared by further in situ curing. The effects of various surface‐modified organoclays and various polyol types on the intercalation and exfoliation behaviour of clay layers were investigated. The interaction between the polyol and clay and the mixing temperature plays an important role in the occurrence of exfoliation and intercalation. The relationship between rheological data of polyol/clay dispersion and the intercalation or exfoliation state of the clay was established. This provides a convenient and efficient way to evaluate the dispersion state of the clay. Based on the experimental results, a possible layer‐by‐layer exfoliation mechanism is proposed. Copyright © 2006 Society of Chemical Industry  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号