首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this study, daily global radiation for Toledo (39°53′05″N, 4°02′58″W, Spain) were utilized to determine monthly-specific equations for estimating global solar radiation from sunshine hours and to obtain improved fits to monthly Angström–Prescott's coefficients.Models were compared using the root mean square error (RMSE), the mean bias error (MBE) and the t-statistic. According to our results, all the models fitted the data adequately and can be used to estimate the specific monthly global solar radiation.Average RMSE and MBE for comparison between observed and estimated global radiation were 1.260 and −0.002 MJ m−2 day−1, respectively. The t-statistic was used as the best indicator, this indicator depends on both, and is more effective for determining the model performance. The agreement between the estimated and the measured data were remarkable and the method was recommended for use in Toledo (Spain).  相似文献   

2.
The measured data of global and diffuse solar radiation on a horizontal surface, the number of bright sunshine hours, mean daily ambient temperature, maximum and minimum ambient temperatures, relative humidity and amount of cloud cover for Jeddah (lat. 21°42′37′′N, long. 39°11′12′′E), Saudi Arabia, during the period (1996–2007) are analyzed. The monthly averages of daily values for these meteorological variables have been calculated. The data are then divided into two sets. The sub-data set I (1996–2004) are employed to develop empirical correlations between the monthly average of daily global solar radiation fraction (H/H0) and the various weather parameters. The sub-data set II (2005–2007) are then used to evaluate the derived correlations. Furthermore, the total solar radiation on horizontal surfaces is separated into the beam and diffuses components. Empirical correlations for estimating the diffuse solar radiation incident on horizontal surfaces have been proposed. The total solar radiation incident on a tilted surface facing south Ht with different tilt angles is then calculated using both Liu and Jordan isotropic model and Klucher’s anisotropic model. It is inferred that the isotropic model is able to estimate Ht more accurate than the anisotropic one. At the optimum tilt angle, the maximum value of Ht is obtained as ∼36 (MJ/m2 day) during January. Comparisons with 22 years average data of NASA SSE Model showed that the proposed correlations are able to predict the total annual energy on horizontal and tilted surfaces in Jeddah with a reasonable accuracy. It is also found that at Jeddah, the solar energy devices have to be tilted to face south with a tilt angle equals the latitude of the place in order to achieve the best performance all year round.  相似文献   

3.
Global solar radiation patterns in Bangi (2°56′7.3″N, 105°47′0.2″E), Malaysia are discussed. The frequency of occurrence of the various solar radiation patterns observed over a 5-year period is derived. These observations will provide useful information for the design of solar energy systems and equipment for installation in tropical countries having a similar global solar radiation pattern.  相似文献   

4.
The knowledge of the amount of solar radiation in an area/region is very essential in the field of Solar Energy Physics. In this work two equations are put forward for estimating global solar radiation from common climate variables in data sparse regions. The first is the Hargreaves equation, Rs=0.16RaTd0.5 where Ra is the extraterrestrial solar radiation and Td is the temperature difference (maximum minus minimum), while the second is the Angstrom equation, Rs=Ra(0.28+0.39n/N) where n and N are the measured sunshine hours and the maximum daylight duration respectively. The global solar radiation estimated by the two equations for three sites, Owerri (5°28′N, 7°2′E), Umudike (5°29′N, 7°33′E) and Ilorin (8°32′N, 4°46′E), located in different climate zones of in Nigeria, West Africa, are in agreement with those of earlier workers and that from Photovoltaic Geographic Information System (PVGIS) project. The implication of this in solar photovoltaic applications has been stressed.  相似文献   

5.
Total (global) solar radiation, H, and diffuse solar radiation, Hd were measured at Ilorin (8° 30′N 4° 42′E) Nigeria. From these, the daily values of H/H0 and Hd/H were computed, where H0 is the extraterrestrial radiation. The relationship between the two ratios and their variation with the prevailing atmospheric conditions were examined.The ratios were found to be opposite in characteristics. H/H0 has high values in clear atmospheres and low values in cloudy or turbid atmospheres; and vice-versa for Hd/H. The two ratios are negatively linearly related and with this fact, two simple mathematical models were obtained for estimating Hd/H in terms of H/H0.  相似文献   

6.
The regression coefficient of the well-known Angstrom correlation are determined for Riyadh city (the capital of Saudi Arabia) longitude 46° 14′E 24°55′N The relationship of the daily and monthly variation of the fraction of the diffuse solar irradiation to extrateresstrial and the clearness index are obtained. The variation of the values of the average daily global solar radiation against the month of the year is reported. The value of Kn defined as the ratio of direct normal Insolation, Hbn measured in Riyadh to direct normal solar extraterrestrial radiation with the KT and Kd were obtained. The daily diffused ratio and the daily clearness index are shown as a function of the month of the year.  相似文献   

7.
Relationship between the diffuse fraction of daily global solar radiation and clearness index (the ratio of global to extraterrestrial radiation) is obtained from the radiation data measured at Dhahran (26°32′N, 50°13′E), Saudi Arabia. Two years of daily radiation data calculated from measured one-minute values are used to develop the relationship. Another year of data is used to validate the relationship. Comparison between the present correlation and previous correlations is presented. The present data confirm the seasonal dependence and the location independence of the correlation reported in literature. The diffuse and global solar radiation are presented for dusty and clear days. The results show that the dust significantly increases the diffuse fraction of the global radiation. The diffuse fraction on a typical clear day in March is 0.11, while on a dusty day, in the same month, may be as high as 0.91.  相似文献   

8.
In the year 1998, the Arab League Educational, Cultural and Scientific Organization (ALESCO), Directorate of Science and Scientific Research, Tunis, had launched the “Solar Radiation Atlas for the Arab World”. This atlas contains three sets of maps (using Mercator projection) for monthly means, where each stands for one month. These are sunshine duration, global solar radiation and diffuse solar radiation. The atlas contains data for nearly 280 stations from 19 Arab states which cover latitudes from 0° (tropic) to 37°N and longitudes 19°E to nearly 60°E with different elevations from the sea level. It also contains useful tables of the monthly recorded means of the direct, diffuse and global solar radiation as well as the sunshine duration for 16 Arab states including 207 cities.The maximum recorded annual mean (10 years) of the global solar radiation in the Arab world was 6.7 kW h/m2/day in Nouakchott (latitude 20°56′N, longitude 17°02′E), Mauritania, and 6.6 kW h/m2/day in Tamenraset (latitude 36°11′N and longitude 5°31′E), Algeria, while the lowest recorded annual mean global solar radiation was 4.1 kW h/m2/day in Mosul (latitude 43°N and longitude 36°E), Iraq. Furthermore, the maximum recorded annual mean sunshine duration in the Arab world was 10.7 h in Aswan (latitude 23°58′N, longitude 32°47′E), Egypt, and the lowest was 7.5 h in Tunis (latitude 36°50′N, longitude 10°14′E), Tunisia.  相似文献   

9.
Measurements and predictions of solar radiation during a period of 10 years on horizontal surfaces at Santa Fe (31° 39′ S, 60° 43′ W), Argentina, reported as average daily global radiation for each month, are presented. Data are compared to those obtained with a previously published and verified model for computing solar radiation on horizontal planes at the earth's surface for cloudless sky days. Measurements show an important reduction of global radiation with respect to the cloudless sky model predictions for all months of the year. Conversely, averaged daily diffuse solar radiation calculated with Page's formula shows a small increment with respect to the predicted diffuse solar radiation for cloudless sky conditions. When direct solar radiation data, calculated from global and diffuse solar radiation values, are compared to theoretical prediction, a significant decrease is observed. This trend is similar to that obtained for global solar radiation.  相似文献   

10.
This paper presents basic data for a five year period from 1986 to 1990 for global and diffuse solar radiation data at Al-Arish (31°04′N, 33°49′E). These data have been processed, analysed, presented, arranged in tables and graphs and discussed. Mean annual monthly and daily total, the diurnal variation and the frequency of daily totals of global solar radiation are computed and discussed. A correlation between the hourly values of the clearness and diffuse index were obtained and the recommended correlation equations were also given. The isopleths of hourly global radiation were also designed and discussed. The frequency distribution and the frequency of extended periods of low radiation income have been studied which are of particular interest in the field performance of solar energy systems.  相似文献   

11.
Two stochastic models are presented of the daily global solar radiation obtained from three years of data measured on a horizontal surface in Marrakesh, Morocco (latitude 31°37′N, longitude 08°02′W, elevation 463 m). The development of these models is based on the removal of the annual periodicity and seasonal variation of solar radiation using two types of normalisation. The first model is developed using a classical decomposition of the daily radiation as the sum of two components: a trend component and a stochastic component. This model is most useful for long simulated sequences. The second model is developed using a non-dimensional variable, the clearness index, which is modelled as a stochastic process after a preliminary transformation leading to a stationary time series. Both models have satisfactorily passed validation tests for forecasting and simulation of daily global solar radiation data.  相似文献   

12.
Measurements of direct solar radiation intensity, using an Angström compensation pyrheliometer carried out over three harmattan seasons (1985–1987) at Ile-Ife (7°29′N, 4°34′E), Nigeria, have been used to determine atmospheric turbidity based on five different models of turbidity viz:: Schüepp (B), Angstrom (β), Kastrov (C), Unsworth (τa) and Linke (T). The five parameters indicate high aerosol loading of the atmosphere during the period and high correlation is established between them: (0.919 r 0.999). An inverse relationship has been noticed between horizontal visibility and atmospheric turbidity: (−0.80 r −0.76).  相似文献   

13.
We have designed tripyridine-thiolato (4,4,4-tricarboxy-2,2:6,2-terpyridine)ruthenium(II) [complex 1], a novel efficient sensitizing dye for dye sensitized TiO2 solar cells, based on the DFT MO calculations with PBE0 functional. Complex 1 is a modified BD (black dye: trithiocyanato (4,4,4-tricarboxy-2,2:6,2-terpyridine)ruthenium(II) complex) molecule where NCS ligands of BD are replaced by C5H4NS ligands. Molecular and electronic structures of complex 1 have been theoretically characterized. Complex 1 is expected to have the following two advantages over BD, in addition to the advantage of high electron transfer rate from the photoexcited dye to TiO2 realized in BD: (1) higher electron transfer rate from redox systems to oxidized dyes; (2) higher absorption efficiency to solar spectrum. We propose complex 1 as a novel efficient sensitizing dye which provides the higher efficiency than does BD for dye sensitized solar cells.  相似文献   

14.
In this study, a prediction model of global solar irradiance distribution on horizontal surfaces has been developed. The methodology is based on neural-network techniques and has been applied to the meteorological database of NTUA, Zografou Campus, Athens (37°58′26″N, 23°47′16″E). The investigation of the correlation between weather conditions, duration of daylight and the representative peak value of a Gaussian-type function plays an essential role in the development of the model. The weather conditions are categorized into six different states, whereas the daylight duration is obtained by familiar equations. Thereafter, a correction methodology for the Gaussian-type function—which stands for all six different states—is applied. Finally, the reliability of the developed model is investigated through a suitable validation procedure.  相似文献   

15.
In this work an application of a methodology to obtain solar radiation maps is presented. This methodology is based on a neural network system [Lippmann, R.P., 1987. An introduction to computing with neural nets. IEEE ASSP Magazine, 4–22] called Multi-Layer Perceptron (MLP) [Haykin, S., 1994. Neural Networks. A Comprehensive Foundation. Macmillan Publishing Company; Hornik, K., Stinchcombe, M., White, H., 1989. Multilayer feedforward networks are universal approximators. Neural Networks, 2(5), 359–366]. To obtain a solar radiation map it is necessary to know the solar radiation of many points spread wide across the zone of the map where it is going to be drawn. For most of the locations all over the world the records of these data (solar radiation in whatever scale, daily or hourly values) are non-existent. Only very few locations have the privilege of having good meteorological stations where records of solar radiation have being registered. But even in those locations with historical records of solar data, the quality of these solar series is not as good as it should be for most purposes. In addition, to draw solar radiation maps the number of points on the maps (real sites) that it is necessary to work with makes this problem difficult to solve. Nevertheless, with the application of the methodology proposed in this paper, this problem has been solved and solar radiation maps have been obtained for a small region of Spain: Jaén province, a southern province of Spain between parallels 38°25′ N and 37°25′ N, and meridians 4°10′ W and 2°10′ W, and for a larger region: Andalucía, the most southern region of Spain situated between parallels 38°40′ N and 36°00′ N, and meridians 7°30′ W and 1°40′ W.  相似文献   

16.
Depleting oil and gas reserves, combined with the growing concerns of global warming, have made it inevitable to seek alternative/renewable energy sources. The integration of renewables such as solar and wind energy is becoming increasingly attractive and is being used widely, for substitution of oil-produced energy, and eventually to minimize atmospheric degradation. The literature shows that commercial/residential buildings in Saudi Arabia consume an estimated 10–40% of the total electric energy generated. In the present investigation, hourly wind-speed and solar radiation measurements made at the solar radiation and meteorological monitoring station, Dhahran (26°32′ N, 50°13′ E), Saudi Arabia, have been analyzed to investigate the feasibility of using hybrid (wind+solar+diesel) energy conversion systems at Dhahran to meet the energy needs of twenty 2-bedroom houses. The monthly average wind speeds for Dhahran range from 4.1 to 6.4 m/s. The monthly average daily values of solar radiation for Dhahran range from 3.6 kWh/m2 to 7.96 kWh/m2. The performance of hybrid systems consisting of different rated power wind farms, photovoltaic (PV) areas, and storage capacities together with a diesel back-up are presented. The monthly average daily energy generated from the above hybrid system configuration has been presented. The deficit energy generated from the back-up diesel generator and the number of operational hours of the diesel system to meet a specific annual electrical energy demand of 702,358 kWh have also been presented.  相似文献   

17.
Analysis of solar ultraviolet radiation (295–385 nm) and total global radiation (290–3000 nm), continuously recorded at a station in Makkah (21.5°N, 39.8°E) for 17 months in 1987–1988, has shown that the monthly average daily UV was 200 Wh m−2. The ratio of UV to total global radiation varied from a maximum of 0.043 to a minimum of 0.028. A drop of 25% below the average 0.036, detected in the summer months, is attributed to scattering and absorption by dust and low tropospheric ozone. Comparison with Dhahran and Kuwait has shown that the effect was localised. A study of diurnal variation and clear, midday hourly radiation and the ratio of UV to global radiation, , also revealed an overall depletion in the summer months, despite the relative decrease in attenuation of Iv during cloudy days and at low solar altitudes. Multiple regressions of Hv and Iv on relevant variables with coefficients of determination exceeding 90% have been performed. Frequency distribution of daily UV is briefly discussed.  相似文献   

18.
Daily global insolation on a horizontal surface in Botswana is recorded continuously at several synoptic stations and at the University of Botswana's Physics Department. Over a number of years, daily total insolation on a tilted surface (β = −30°) was recorded at the Botswana Technology Centre. Hourly, and instantaneous direct normal, global, diffuse and UV-components are continuously recorded at the University of Botswana. All these measurements are done with standard EPLAB equipment.It is found out that the instantaneous direct normal radiation at Solar noon can be as high as 1150 W·m−2; and that at 30 min before sunset it can be above 600 W·m−2; and it can also be as high as 100 W·m−2 at sunset or sunrise moments (i.e. with half of the solar disk under the horizon).Daily direct normal solar radiation can exceed 45 MJ·m−2. Mean daily global radiation varies from 31 MJ·m−2 in December to 16 MJ·m−2 in June. Such big values of daily direct normal and global radiation are explained by low humidity and low turbidity.Cases of an anomalous phenomenon which lead to an abnormally big phase shift when direct normal radiation is increasing greatly after Solar noon are observed, and discussed. It is also found that when humidity is low and visibility is high, hourly Ig values recorded with a pyranometer can be less than Ibn (cosθz) + Id-values. This discrepancy could be quite common for regions where humidity and turbidity are low. The trend in the behaviour of the UV-component during the last five years is also analyzed and discussed. The conclusion is made that the ozone layer over Botswana is continuously being depleted.  相似文献   

19.
Techniques of computation of global and diffuse solar radiation from the daily duration of bright sunshine and cloud cover are well-known. However, since radiation computations from cloud cover data provide rather imprecise results, this method is resorted to only when sunshine data are not available. To obtain a better idea of the inverse relationship between the long-term averages of sunshine duration and total cloud cover, an analysis of the monthly mean values of the fraction of the sky C, covered by clouds of all types and the duration of bright sunshine, n, was carried out. The relationship between C and (1−n/N′), where N′ is the maximum possible hours of sunshine, was found to be non-linear. The shape of the regression line connecting the two parameters also shows that ground observations of cloud cover always tend to be overestimates. The differences between such estimates and cloud cover values derived from sunshine duration tend to become zero when skies are either clear or overcast and are a maximum for cloud cover values in the range 0.4–0.7. A cubic regression equation was derived relating C and (1−n/N′) and using this relationship, it has been possible to compute sunshine duration from cloud cover data to an accuracy of about 4–7 per cent and from the cloud derived sunshine data, to compute monthly mean values of global solar radiation to an accuracy of about 6–10 per cent and diffuse solar radiation within an accuracy of about 10–15 per cent.  相似文献   

20.
Study of the climatology of global solar radiation is considered very useful for assessing the potential efficiency of systems designed for solar energy utilization. This paper explores some aspects of solar radiation climatology in Iraq. Analysis of the monthly averages global solar radiation and the general atmospheric transparency for the period 1971–1985 for three different climatological zones (Mosul, Baghdad, Nasiriyah) are discussed. The frequency distribution of daily clearness index for each station is determined using histograms of frequencies. The percentage number of days with solar radiation and sunshine duration values below a certain value is analyzed and discussed. The period of successive days having radiation less than 5 MJ/m2 · day−1 and 10 MJ/m2 · day−1 is examined and presented graphically.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号