首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A novel multiresonant switching concept is proposed to overcome the limitations of high-frequency quasi-resonant converters. A novel family of zero-voltage-switching (ZVS) multiresonant converters is generated. The unique arrangement of the multiresonant network results in absorption of all major parasitic components in the resonant circuit, including transistor output capacitance, diode junction capacitance, and transfer leakage inductance. This allows the new converters to provide favorable switching conditions for all semiconductor devices. Experimental results show that ZVS multiresonant converters are superior to ZVS quasi-resonant converters due to their reduced transistor voltage stress and improved load range and stability  相似文献   

2.
Experimental results are presented for buck and flyback zero-voltage-switched (ZVS) quasi-resonant converters (QRCs) operating above 5 MHz. A design procedure for a buck ZVS QRC is proposed that minimizes voltage stress to the power MOSFET transistor while maintaining zero voltage switching for specified ranges of input voltage and load resistance. A quasi-resonant gate drive scheme is also proposed and implemented in a buck converter. The drive is simple and provides high switching speed. Power dissipation in the gate drive is substantially reduced due to the quasi-resonant operation. The ZVS QRC technique described is suitable for very-high-frequency operation due to its ability to reduce dynamic turn-on losses, Miller effect, dv/dt, and di//dt and can be applied in distributed onboard power supplies  相似文献   

3.
Unity power factor zero-voltage-switched (ZVS) AC-to-DC power converters with an active filter are proposed. The line voltage is supplied to AC-to-DC power converters through a rectifier circuit with an input filter, to reduce high-frequency ripple components. The line current is almost synchronized to the line voltage, due to the low impedance of the input filter. Forward ZVS multiresonant power converters (ZVS-MRCs) are utilized for high-frequency operation and lossless switching. An active filter is introduced to minimize the twice line-frequency ripple component of the output voltage without large-size passive filters. Experimental results show that the proposed scheme gives good steady-state performances of the AC-to-DC power converters  相似文献   

4.
Multi-loop control for quasi-resonant converters   总被引:2,自引:0,他引:2  
A multiloop control scheme for quasi-resonant converters (QRCs) is described. Like current-mode control for pulse width modulation (PWM) converters, this control offers excellent transient response and replaces the voltage-controlled oscillator (VCO) with a simple comparator. In this method, referred to as current-sense frequency modulation (CSFM), a signal proportional to the output-inductor current is compared with an error voltage signal to modulate the switching frequency. The control can be applied to either zero-voltage-switched (ZVS) or zero-current-switched (ZCS) QRCs. Computer simulation is method applied to a ZCS buck QRC. A circuit implementation is presented that allows multiloop control to be used on circuits switching up to 10 MHz. This circuit requires few components and produces clean control waveforms. Experimental results are presented for zero-current flyback and zero-voltage buck QRCs, operating at up to 7 MHz. Good small-signal characteristics have been obtained  相似文献   

5.
软开关PWM变换器发展综述   总被引:4,自引:0,他引:4  
软开关技术已从基本谐振变换器,准谐振变换器和谐振直流环节变换器发展到软开关PWM变换器。软开关PWM变换器综合了软开关技术和PWM技术各自的优点,构成新一类目前发展和应用前景的变换器。本文系统地综述了谐振直流环变换器,零电压和零电流开关PWM变换器,零电压转换PWM变换器和零电流转换PWM变换器的工作原理和特点。  相似文献   

6.
Design oriented analysis of reactive power in resonant converters   总被引:1,自引:0,他引:1  
An analysis of reactive (circulating) power and RMS currents in a number of resonant converters is presented. The analyzed converter topologies include the half-bridge zero-current-switching quasi-resonant-converter (HB ZCS-QRC), the half-bridge zero-voltage-switched multiresonant-converter (HB ZVS-MRC), the constant frequency half-bridge zero-voltage-switched multiresonant-converter (CF HB ZVS-MRC), the HB ZVS that uses the magnetizing inductance as a resonant element (HB ZVS-MRC (LM)), and the full-bridge series-parallel-resonant-converter (FB SPRC). It is shown that the HB ZCS-QRC and the soft-switched HB ZVS-MRC (LM) circulate relatively small amounts of power. However, the circulating power in the HB ZVS-MRC, CF HB ZVS-MRC, and SPRC is found to be considerably larger. The analysis is used to generate sets of characteristics for each converter that can be used in their design optimization based on the minimization of the circulating power. Several design examples are presented for the HB XVS-MRC and SPRC  相似文献   

7.
Constant-frequency control of quasi-resonant converters   总被引:1,自引:0,他引:1  
An additional independent control needed to eliminate the undesirable variable switching frequency of quasi-resonant (QR) converters is obtained by replacing the output rectifier by an active switch. The concept is applicable to all classes of converters. Compared to QR converters with conventional switch realization, constant-frequency quasi-resonant (CF-QR) converters exhibit the same type of switching transitions and similar switch voltage and current stresses. Advantages of CF-QR converters are not restricted to the constant-frequency control. In all classes, operation at zero load is possible, so that the available load range is unlimited. The range of attainable, conversion ratios is significantly extended in the classes of zero-voltage quasi-square-wave (CF-ZV-QSW) and zero-voltage multiresonant (CF-ZV-MR) topologies. A practical design example of a 25 W CF-ZV-MR buck converter is constructed and evaluated. The converter operates at 2 MHz from zero load to full load, with a full-load efficiency of 83%. Simple duty ratio control is used to maintain the output voltage constant for all loads. The circuit is inherently immune to the short-circuit condition at the output. Disadvantages of CF-QR converters are the increased gate-drive losses and increased complexity of the power stage and the control circuitry  相似文献   

8.
A new family of single-switch three-phase high-power-factor rectifiers, which have continuous input and output currents, is introduced. By using a multiresonant scheme, the transistor operates with zero-current switching (ZCS), and the diodes operate with zero-voltage switching (ZVS). These multiresonant rectifiers with a single transistor are capable of drawing a higher quality input-current waveform at nearly unity power factor and lower stresses than quasi-resonant rectifiers. Buck-type converters are used for the power stage, and, hence, the output voltage is lower than the input voltage. Moreover, these rectifiers have a wide load range and low stresses on semiconductor devices. From the analysis, normalized characteristics of the rectifier are derived. The design and breadboard implementation of the rectifier delivering 147 Vdc at 6 kW from a 3φ 240-V rms(LL) input is described. The total harmonic distortion (THD) of the line current is less than 5%, and the system efficiency is about 94% at the full load  相似文献   

9.
A complete DC analysis of the half-bridge zero-voltage-switched multiresonant converter is presented. The analysis reveals four different modes of operation. The existence of the modes has been verified experimentally. A computer algorithm is developed for calculating the complete DC voltage-conversion-ratio characteristics encompassing all four modes of operation. The DC characteristics enable the design of the converter to be optimized. The optimization is performed by selecting the resonant components and the turns ratio of the transformer. The computer algorithm can be easily adapted for the analysis of the small-signal properties of the half-bridge multiresonant converter  相似文献   

10.
A full-bridge zero-voltage-switched (ZVS) multiresonant converter (MRC) was built for a pulse load with a peak power of 1.44 kW and an average power of 360 W. The converter works with an input-voltage range from 220 to 350 V, and delivers 32 V to the pulse load with a constant peak current of 45 A. The efficiency range of the converter was measured from 82.5 to 90.5%. The maximum efficiency occurs at low line and decreases as the input voltage increases. Detailed analysis and design of the converter, along with experimental results, are presented  相似文献   

11.
High-frequency quasi-resonant converter technologies   总被引:4,自引:0,他引:4  
Resonant switch topologies operating under the principle of zero-current switching (ZCS) and zero-voltage switching (ZVS) are introduced to minimize switching losses, stresses, and noises. Using the resonant switch concept, a host of new quasi-resonant converters (QRCs) are derived from conventional PWM converters. They are capable of operating in the megahertz range, with a significant improvement in performance and power density. Performances of ZCS and ZVS QRCs are compared. Power stages, gate drives, and feedback controls are discussed  相似文献   

12.
Asymmetric control scheme is an approach to achieve zero-voltage switching (ZVS) for half-bridge isolated dc-dc converters. However, it is not suited for wide range of input voltage due to the uneven voltage and current components stresses. This paper presents a novel "duty-cycle-shifted pulse-width modulated" (DCS PWM) control scheme for half-bridge isolated dc-dc converters to achieve ZVS operation for one of the two switches without causing the asymmetric penalties in the asymmetric control and without adding additional components. Based on the DCS PWM control scheme, an active-clamp branch comprising an auxiliary switch and a diode is added across the isolation transformer primary winding in the half-bridge converter to achieve ZVS for the other main switch by utilizing energy stored in the transformer leakage inductance. Moreover, the auxiliary switch also operates at ZVS and zero-current switching (ZCS) conditions. Furthermore, during the off-time period, the ringing resulted from the oscillation between the transformer leakage inductance and the junction capacitance of two switches is eliminated owing to the active-clamp branch and DCS PWM control scheme. Hence, switching losses and leakage-inductance-related losses are significantly reduced, which provides the converter with the potential to operate at higher efficiencies and higher switching frequencies. The principle of operation and key features of the proposed DCS PWM control scheme and two ZVS half-bridge topologies are illustrated and experimentally verified.  相似文献   

13.
A number of soft-switching pulse-width-modulated (PWM) converter techniques have been proposed, aimed at combining the desirable features of both the conventional PWM and resonant converters while avoiding their respective limitations. In this paper, three classes of zero-voltage soft-switching (PWM) converters (namely the zero-voltage-switched (ZVS) quasi-square-wave converters, ZVS-PWM converters, and zero-voltage-transition PWM converters) and two classes of zero-current soft-switching PWM converters (namely, the zero-current-switched PWM converters and zero-current-transition PWM converters) are reviewed, and their merits and limitations are assessed. Experimental results of several prototype of converters are presented to illustrate each class of converter  相似文献   

14.
Modeling PWM DC/DC converters out of basic converter units   总被引:4,自引:0,他引:4  
An alternative approach to modeling pulsewidth-modulated (PWM) DC/DC converters out of basic converter units (BCUs) is presented in this paper. Typical PWM DC/DC converters include the well-known buck, boost, buck-boost, Cuk, Zeta, and Sepic. With proper reconfiguration, these converters can be represented in terms of either buck or boost converter and linear devices, thus, the buck and boost converters are named BCUs. The PWM converters are, consequently, categorized into buck and boost families. With this categorization, the small-signal models of these converters are readily derived in terms of h parameter (for buck family) and g parameter (for boost family). Using the proposed approach, not only can one find a general configuration for converters in a family, but one can yield the same small-signal models as those derived from the direct state-space averaging method. Additionally, modeling of quasi-resonant converters and multiresonant converters can be simplified when adopting the proposed approach  相似文献   

15.
Design tradeoffs and performance comparisons of various implementations of the flyback converter with a synchronous rectifier (SR) are presented. Specifically, the merits and limitations of the constant-frequency (CF) continuous-conduction mode (CCM), CF discontinuous-conduction mode (DCM), variable-frequency (VF) DCM, and zero-voltage-switched (ZVS) DCM flyback converters with SRs are discussed. The theoretical efficiency improvements of the discussed synchronous rectification approaches relative to Schottky diode implementations are derived. Finally, theoretical results are verified on an experimental universal-input off-line 15 V/36 W flyback prototype  相似文献   

16.
A novel resonant switch and a family of zero-current and zero-voltage mixed-mode switching quasi-resonant converters (QRCs) called single-cycle resonant converters (SCRCs) are proposed to improve the performance of the conventional QRCs. The SCRCs, which include two active switches operated with zero-current switching (ZCS) and zero-voltage switching (ZVS), respectively, show very simple operation and ease of control and analysis, and they overcome the limited load range characteristics of the conventional ZCS QRCs. The SCRCs can be applied even for a high-frequency AC chopper by replacing unidirectional switches with bidirectional ones. Steady-state operation and characteristics of the buck-type SCRCs are analyzed and compared with those of the buck-type full-wave QRC (FW-QRC). Experimental results at a a 200 kHz, 1 kW level are shown to verify the operational principle and characteristics  相似文献   

17.
Zero-voltage switching technique in DC/DC converters   总被引:6,自引:0,他引:6  
A novel resonant switch operating under the principle of zero-voltage switching is presented. The basic configurations of the voltage-mode resonant switches are presented. The circuit's operating principles are described using a voltage-mode quasi-resonant boost converter. DC analysis of the converter is carried out. A new family of voltage-mode quasi-resonant converters are derived, and several members of this family are presented. The duality relationship between the zero-current switching technique and the zero-voltage switching technique is derived. These two techniques are compared using an example showing the duality between a current-mode quasi-resonant Buck converter and a voltage-mode quasi-resonant boost converter. The similarities and differences of the voltage-mode quasi-resonant converters and the Class-E converters are discussed. A 5 MHz 50 V to 5 V flyback converter employing the zero-voltage switching technique has been implemented. Design considerations and experimental results of this circuit are presented  相似文献   

18.
This paper presents a general method of modeling, synthesizing, and analyzing quasi-resonant converters (QRCs), including actively clamped QRCs. First, the concept of the pulse-width modulation (PWM) switch model is generalized to encompass all PWM (nonisolated) converters. Then, by adding inductor-capacitor (LC) elements and auxiliary switches into the PWM switch, QRC families are synthesized. DC and small signal analyses can be carried out based on these switch models. Furthermore, the duality relationship between zero-voltage-switching (ZVS) and zero-current-switching (ZCS) QRCs is established systematically and rigorously  相似文献   

19.
This paper describes how the current-injected (CI) method, which has been applied only to pulse-width modulation (PWM) DC-DC power converters, can be extended to quasi-resonant (QR) power converters. The methodology for extending this small-signal modeling approach is described in detail. It is also shown that QR dynamic models are easy to obtain since they are derived directly from PWM power converter models. These new models result in a unified block diagram from which zero-voltage-switching (ZVS) or zero-current-switching (ZCS) transfer functions of the basic topologies, such as buck, boost, and buck-boost operated in half-wave (HW) or full-wave (FW) modes, are found. As an application of this method, a ZVS boost power converter and ZCS boost power converter were fabricated and tested. In addition, small-signal models of these power converters were derived with the help of the state-space averaging (SSA) method. The agreement of the CI method simulations with the experimental results for the two QR power converters is comparable or better than that of the SSA method  相似文献   

20.
A performance comparison of flyback, forward, and half-bridge zero-current-switched quasi-resonant converter topologies for high-frequency offline applications is presented. It is shown that the half-bridge topology with secondary side resonance operating in half-wave mode is most suitable. A complete design procedure for the half-bridge power stage and the voltage-feedback control is presented together with experimental results for a 300 V DC hybridized converter which operates with conversion frequencies from 400 kHz to 2 MHz and delivers 1.5-16 A at 5 V DC  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号