首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper studies the H control for a class of quasi‐linear uncertain stochastic time‐varying delayed systems. Firstly, by using the linear matrix inequality (LMI) method, a sufficient condition is obtained for the robustly stochastic stability. Secondly, the robust H state feedback controller is designed, such that the considered system is not only internally stochastically stabilizable but also satisfies the robust H performance. The desired robust H controller is obtained via solving some LMIs. Finally, one example is provided to demonstrate the effectiveness of the proposed method.  相似文献   

2.
Linear, state‐delayed, continuous‐time systems are considered with both stochastic and norm‐bounded deterministic uncertainties in the state–space model. The problem of robust dynamic H output‐feedback control is solved, for the stationary case, via the input–output approach where the system is replaced by a nonretarded system with additional deterministic norm‐bounded uncertainties. A delay‐dependent result is obtained which involves the solution of a simple linear matrix inequality. In this problem, a cost function is defined which is the expected value of the standard H performance cost with respect to the stochastic parameters. A practical example taken from the field of guidance control is given that demonstrates the applicability of the theory. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

3.
This article focuses on the robust state feedback reliable H control problem for discrete‐time systems. Discrete‐time systems with time‐varying delayed control input are formulated. Based on the Lyapunov–Krasovskii method and linear matrix inequality (LMI) approach, delay‐dependent sufficient conditions are developed for synthesizing the state feedback controller for an uncertain discrete‐time system. The parameter uncertainty is assumed to be norm bounded. A design scheme for the state feedback reliable H controller is proposed in terms of LMIs, which can guarantee the global asymptotic stability and the minimum disturbance attenuation level. Finally, numerical examples are provided to illustrate the effectiveness and reduced conservatism of the proposed methods.  相似文献   

4.
In this paper, the robust delay‐dependent H control for a class of uncertain systems with time‐varying delay is considered. An improved state feedback H control is proposed to minimize the H‐norm bound via the LMI optimization approach. Based on the proposed result, delay‐dependent criteria are obtained without using the model transformation technique or bounded inequalities on cross product terms. The linear matrix inequality (LMI) optimization approach is used to design the robust H state feedback control. Some numerical examples are given to illustrate the effectiveness of the approach.  相似文献   

5.
This paper is concerned with the problem of robust H control for uncertain stochastic systems with Markovian jump parameters and time‐varying state delays. A linear matrix inequality approach is developed and state feedback controllers are designed, which guarantee mean square asymptotic stability of the closed‐loop system and a prescribed H performance level for all modes and admissible uncertainties. A numerical example is provided to demonstrate the application of the proposed method.  相似文献   

6.
This paper considers quadratic stabilizability and H feedback control for stochastic discrete‐time uncertain systems with state‐ and control‐dependent noise. Specifically, the uncertain parameters considered are norm‐bounded and external disturbance is an l2‐square summable stochastic process. Firstly, both quadratic stability and quadratic stabilization criteria are presented in the form of linear matrix inequalities (LMIs). Then we design the robust H state and output feedback H controllers such that the system with admissible uncertainties is not only quadratically internally stable but also robust H controllable. Sufficient conditions for the existence of the desired robust H controllers are obtained via LMIs. Finally, some examples are supplied to illustrate the effectiveness of our results.  相似文献   

7.
This paper investigates the problem of simultaneous robust normalization and delay‐dependent H control for a class of singular time‐delay systems with uncertainties. Not only the state and input matrices but also the derivative matrices of the considered systems are assumed to have uncertainties. New sufficient conditions for the existence of a proportional plus derivative state feedback H controller are derived as LMIs such that the closed‐loop singular system is normal, stable, and guarantee a specific level of performance. Specially, a static state feedback H controller alone or a state‐derivative feedback H controller alone can unite to be dealt with by applying our proposed method. Two simulation examples are provided to demonstrate the effectiveness of the proposed approach in this paper. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

8.
In this study, an adaptive fuzzy‐based mixed H2/H tracking control design is developed in robotic systems under unknown or uncertain plant parameters and external disturbances. The mixed H2/H control design has the advantage of both H2 optimal control performance and H robust control performance and the fuzzy adaptive control scheme is used to compensate for the plant uncertainties. By virtue of the skew‐symmetric property in the robotic systems and adequate choice of state variable transformation, sufficient conditions are developed for the adaptive fuzzy‐based mixed H2/H tracking control problems in terms of a pair of coupled algebraic equations instead of a pair of coupled differential equations. The proposed methods are simple and the coupled algebraic equations can be solved analytically. Simulation results indicate that the desired performance of the proposed adaptive fuzzy‐based mixed H2/H tracking control schemes for the uncertain robotic systems can be achieved.  相似文献   

9.
This paper is concerned with the problem of robust H control for a class of uncertain nonlinear Itô‐type stochastic systems with mixed time delays. The parameter uncertainties are assumed to be norm bounded, the mixed time delays comprise both the discrete and distributed delays, and the sector nonlinearities appear in both the system states and delayed states. The problem addressed is the design of a linear state feedback controller such that, in the simultaneous presence of parameter uncertainties, system nonlinearities and mixed time delays, the resulting closed‐loop system is asymptotically stable in the mean square and also achieves a prescribed H disturbance rejection attenuation level. By using the Lyapunov stability theory and the Itô differential rule, some new techniques are developed to derive the sufficient conditions guaranteeing the existence of the desired feedback controllers. A unified linear matrix inequality is proposed to deal with the problem under consideration and a numerical example is exploited to show the usefulness of the results obtained. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

10.
In this paper, a robust H control problem is considered for an uncertain singular system. An active disturbance rejection method called equivalent input disturbance (EID) is used to reduce the influence of exogenous disturbances and uncertainties on the system. At the first, there exists an EID, which can produces the same effect on the system as disturbances and uncertainties do in the control channel according to the EID concept. Then, an EID estimator is constructed to estimate the influence of EID on the system. Finally, based on Lyapunov stability theory, a static output feedback‐based robust H controller combined with EID estimate is designed, guaranteeing that closed‐loop system is admissible (regular, impulse‐free, and stable) with a prescribed H performance level. Compared with traditional H control method, H control based on EID method improve the control performance of the system. A numerical example demonstrates the validity of the method.  相似文献   

11.
In this paper, the H input/output (I/O) linearization formulation is applied to design an inner‐loop nonlinear controller for a nonlinear ship course‐keeping control problem. Due to the ship motion dynamics are non‐minimum phase, it is impossible to use the ordinary feedback I/O linearization to resolve. Hence, the technique of H I/O linearization is proposed to obtain a nonlinear H controller such that the compensated nonlinear system approximates the linear reference model in I/O behaviour. Then a μ‐synthesis method is employed to design an outer‐loop robust controller to address tracking, regulation, and robustness issues. The time responses of the tracking signals for the closed‐loop system reveal that the overall robust nonlinear controller is able to provide robust stability and robust performance for the plant uncertainties and state measurement errors. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

12.
In this study, a PID‐type controller incorporating an adaptive learning scheme for the mixed H2/H tracking performance is developed for constrained robots under unknown or uncertain plant parameters and external disturbances. The mixed H2/H control design has the advantage of both H2 optimal control performance and H robust control performance and the adaptive control scheme is used to compensate the plant uncertainties. By virtue of the skew‐symmetric property of the constrained robotic systems and an adequate choice of state variable transformation, sufficient conditions are developed for the adaptive mixed H2/H tracking control problems in terms of a pair of coupled algebraic equations instead of a pair of coupled nonlinear differential equations. The proposed methods are simple and the coupled algebraic equations can be solved analytically. Simulation results indicate that the desired performance of the proposed adaptive mixed H2/H tracking control schemes for the uncertain constrained robotic systems can be achieved.  相似文献   

13.
This paper studies the problem of robust H control for continuous‐time networked control systems (NCSs). A new type of Lyapunov functionals is exploited to derive sufficient conditions for guaranteeing the robust exponential stability and H performance of the considered system. It is shown that the new result is less conservative than the existing corresponding ones. Meanwhile, a method of eliminating redundant variables to reduce computational complexity is given, which is also applied to design state feedback H controllers, and the design condition is given in terms of solutions to a set of linear matrix inequalities (LMIs). Numerical examples are given to illustrate the effectiveness of the proposed methods. Copyright © 2009 John Wiley and Sons Asia Pte Ltd and Chinese Automatic Control Society  相似文献   

14.
This paper addresses the problem of designing an Hfuzzy state‐ feedback (SF) plus state‐derivative‐feedback (SDF) control system for photovoltaic (PV) systems based on a linear matrix inequality (LMI) approach. The TS fuzzy controller is designed on the basis of the Takagi‐Sugeno (TS) fuzzy model. The sufficient condition is found such that the system with the fuzzy controller is asymptotically stable and an Hperformance is satisfied. First, a dc/dc buck converter is considered to regulate the power output by controlling state and state‐derivative variables of PV systems. The dynamic model of PV systems is approximated by the TS fuzzy model in the form of nonlinear systems. Then, based on a well‐known Lyapunov functional approach, the synthetic is formulated of an Hfuzzy SF plus SDF control law, which guarantees the L2‐gain from an exogenous input to the regulated output to be less than or equal to some prescribed value. Finally, to show effectiveness, the simulation of the PV systems with the proposed control is assessed by the computer programme. The proposed control method shows good performance for power output and high stability for the PV system.  相似文献   

15.
This paper is concerned with the problems of robust stochastic stabilization and robust H control for uncertain discrete‐time stochastic bilinear systems with Markovian switching. The parameter uncertainties are time‐varying norm‐bounded. For the robust stochastic stabilization problem, the purpose is the design of a state feedback controller which ensures the robust stochastic stability of the closed‐loop system irrespective of all admissible parameter uncertainties; while for the robust H control problem, in addition to the robust stochastic stability requirement, a prescribed level of disturbance attenuation is required to be achieved. Sufficient conditions for the solvability of these problems are obtained in terms of linear matrix inequalities (LMIs). When these LMIs are feasible, explicit expressions of the desired state feedback controllers are also given. An illustrative example is provided to show the effectiveness of the proposed approach. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

16.
In this paper, the problem of model reference resilient control is investigated for the helicopter system with the time‐varying disturbance and unmeasurable states. Firstly, a disturbance observer and a state observer are built to estimate the time‐varying disturbance and unmeasurable states. Then, combining the methods of model reference control and disturbance observer–based control, the state feedback robust resilient control scheme and the dynamic output feedback robust resilient control method are proposed, respectively. Under the two developed robust resilient control schemes, sufficient conditions are obtained to guarantee that the helicopter system asymptotically tracks the reference model with H performance. Finally, simulation results are presented to show the effectiveness of the model reference resilient control method.  相似文献   

17.
This paper formulates and solves the robust H control problem for discrete‐time nonlinear switching systems. The H control problem is interpreted as the l2 finite gain control problem and is studied using a dissipative systems theory for switched systems. Both state and measurement feedback control problems are formulated as dynamic games and solved using dynamic programming. The partially observed dynamic game corresponding to the measurement feedback control problem is solved by transforming into a completely observed, full state infinite‐dimensional game problem using information states. Our results are illustrated with an example. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

18.
This paper addresses the problem of robust H control for uncertain continuous singular systems with state delay. The singular system under consideration involves state time delay and time‐invariant norm‐bounded uncertainty. Based on the linear matrix inequality (LMI) approach, we design a memoryless state feedback controller law, which guarantees that, for all admissible uncertainties, the resulting closed‐loop system is not only regular, impulse free and stable, but also meets an H‐norm bound constraint on disturbance attenuation. A numerical example is provided to demonstrate the applicability of the proposed method. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

19.
In this paper, the problem of a generalized type of H control is investigated for continuous‐time singular systems, which treats a mixed attenuation of exogenous inputs and initial conditions. First, a performance measure that is essentially the worst‐case norm of the regulated outputs over all exogenous inputs and initial conditions is introduced. A necessary and sufficient condition is obtained to ensure the singular system to be admissible and the performance measure to be less than a prescribed scalar. Based on the criterion a sufficient condition for the existence of a state‐feedback controller is established in terms of linear matrix inequalities. Moreover, the relationship between the performance measure and the standard H norm of the system is provided. Two numerical examples are given to demonstrate the properties of the obtained results.  相似文献   

20.
This paper addresses the finite‐time H bumpless transfer control problem for switched systems. The main idea lies in designing a state‐feedback controller with amplitude limitation and a state‐dependent switching law to reduce control bumps caused by switching. First, a local bumpless transfer condition is proposed to limit the amplitude of switching controllers at switching points. Second, by introducing a state‐dependent switching law, a prescribed finite‐time H bumpless transfer control performance is attained even if it does not hold for each subsystem or system state remaining on a switching surface. Third, a sufficient condition verifying the solvability of finite‐time H bumpless transfer control problem is established by resorting to multiple Lyapunov function method. Finally, the effectiveness of developed method is illustrated by a numerical example.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号